

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Siti Nucleari

MONITORAGGIO RADIOLOGICO AMBIENTALE SITO NUCLEARE DI TRINO (VC)

Rapporto anno 2015

Relazione tecnica n. 16/SS21.02/2016

	Funzione: Componente SS Siti Nucleari	Data: 28/06/2016	Firma:
Redazione	Nome: Luca Albertone	Data. 20/00/2010	Firma: L OVE
	Funzione: Componente SS Siti Nucleari	Data: 28/06/2016	Firmar On Edit
	Nome: Giuseppe Tozzi	Data. 20/00/2010	Filma. J Ego
Verifica	Funzione: Responsabile SS Siti Nucleari	Data: 30/06/2016	Firma:
Vernica	Nome: Laura Porzio	Data. 30/00/2010	Firma:
	Funzione: Responsabile Dipartimento		
Approvazione	Tematico Radiazioni	Firmato digitalmente	е
	Nome: Giovanni d'Amore		

Il sistema di gestione qualità è certificato ISO 9001: 2008 da SAI GLOBAL ITALIA

INDICE

1	PREMESSA	3
2	ATTIVITÀ DI MONITORAGGIO E CONTROLLO	3
3	LE STRATEGIE DI CONTROLLO	4
4	ATTIVITÀ SVOLTE DALLA CENTRALE "E. FERMI" NELL'ANNO 2015	5
5	LE RETI DI MONITORAGGIO	6
6	METODOLOGIA DI MISURA	8
7	STRUMENTAZIONE UTILIZZATA	10
8	ATTIVITÀ DI MONITORAGGIO	10
8.1.	Monitoraggio ambientale ordinario – risultati delle misure	10
9	ATTIVITÀ DI CONTROLLO	28
9.1.	Controllo degli scarichi di effluenti radioattivi	28
9.2.	Controllo durante le operazioni di trasporto del combustibile nucleare irraggiato	29
10	VALUTAZIONI DOSIMETRICHE	29
11	VALUTAZIONI CONCLUSIVE	30

1 PREMESSA

In questa relazione vengono riassunti i risultati del monitoraggio radiologico ambientale condotto da Arpa Piemonte nell'anno 2015 presso il sito nucleare di Trino (VC).

Il quadro legislativo di riferimento è costituito dal D. Lgs. 17 marzo 1995, n. 230 e ss.mm.ii. "Attuazione delle direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 2006/117/Euratom in materia di radiazioni ionizzanti, 2009/71/Euratom in materia di sicurezza nucleare degli impianti nucleari e 2011/70/Euratom in materia di gestione sicura del combustibile esaurito e dei rifiuti radioattivi derivanti da attività civili" e dalla Legge n. 1860 del 31 dicembre 1962 e s.m.i.

In particolare, per quanto riguarda il monitoraggio della radioattività ambientale, l'art. 104 del sopracitato Decreto Legislativo demanda la gestione delle reti uniche regionali alle singole Regioni le quali, per l'effettuazione dei prelievi e delle misure, debbono avvalersi delle strutture pubbliche idoneamente attrezzate.

In quest'ambito la Regione Piemonte si avvale di Arpa Piemonte ed ha emanato le disposizioni per lo svolgimento di dette attività di monitoraggio con la DGR n. 17-11237 del 9 dicembre 2003 "Disposizioni per lo svolgimento delle attività di controllo e di sorveglianza ambientale in materia di radiazioni ionizzanti degli impianti nucleari e di altre particolari installazioni di cui al D.Lgs. 17 marzo 1995, n. 230 e s.m.i. " e successivamente con la legge regionale n. 5 del 18 febbraio 2010 "Norme sulla protezione dai rischi da esposizione a radiazioni ionizzanti".

I compiti di controllo su tutti gli aspetti della sicurezza nucleare sono invece in capo all'ISPRA, autorità di sicurezza nazionale (capo VII del D. Lgs. 230/95 e ss.mm.ii.). Tuttavia Arpa Piemonte svolge alcune attività di controllo in collaborazione con ISPRA in attuazione del "Protocollo operativo tra Arpa Piemonte e Apat" siglato in data 16 giugno 2005 e rinnovato nel 2015.

2 ATTIVITÀ DI MONITORAGGIO E CONTROLLO

La sorveglianza presso i siti nucleari viene effettuata da Arpa Piemonte sia attraverso la gestione di reti di monitoraggio radiologico ambientale, ordinarie e straordinarie, sia attraverso lo svolgimento di attività di controllo puntuale.

Reti locali di monitoraggio

Il monitoraggio radiologico ambientale è uno strumento che consente di valutare lo stato della contaminazione radioattiva dell'ambiente e conseguentemente di stimare la dose equivalente alla popolazione, grandezza proporzionale al rischio indotto dall'esposizione alle radiazioni ionizzanti. Le misure di concentrazione effettuate sulle varie matrici campionate vengono pertanto utilizzate per calcolare la dose agli individui dei gruppi di riferimento della popolazione, tenendo conto delle abitudini alimentari e di vita.

In via generale si può distinguere tra due diverse tipologie: il monitoraggio ordinario ed il monitoraggio straordinario.

• Il monitoraggio ordinario

Viene effettuato con il fine di segnalare tempestivamente l'insorgere di situazioni anomale e di fenomeni di accumulo di particolari radionuclidi rilasciati nell'ambiente. Un monitoraggio, per essere uno strumento efficace, deve essere pianificato sulla base delle indicazioni che emergono da uno studio preliminare. Questo studio, partendo, per ogni sito, dalle informazioni sulle modalità e sulla quantità di effluenti radioattivi scaricati, consente di individuare, con l'ausilio di opportuni modelli di diffusione, le *vie critiche* ed i *gruppi di riferimento della*

popolazione. Vengono così scelte le matrici ambientali ed alimentari da campionare, i punti di campionamento significativi e la frequenza di campionamento.

• Il monitoraggio straordinario

Viene effettuato in occasione di particolari attività o dopo il verificarsi di una situazione anomala, incidentale o di calamità naturale che interessi un sito nucleare. In questo caso il monitoraggio viene pianificato in funzione dell'accaduto e non ha più una funzione strettamente preventiva ma è mirato alla verifica delle eventuali conseguenze indotte sull'ambiente dall'evento in questione.

Attività di controllo

Vengono svolte, in collaborazione con ISPRA, le seguenti attività di controllo:

- la sorveglianza in occasione di attività particolari o di eventi anomali;
- il controllo degli scarichi di effluenti radioattivi liquidi di tutti gli impianti mediante il campionamento e l'analisi di un campione dai serbatoi di raccolta prima di ogni scarico.

3 LE STRATEGIE DI CONTROLLO

Sono state applicate le strategie di controllo descritte nel documento *Strategie di monitoraggio e controllo dei siti nucleari* disponibile sul sito <u>www.arpa.piemonte.it</u>.

Di seguito, per comodità di consultazione, vengono brevemente riassunte.

La normativa di riferimento (D. Lgs. 230/95 e ss.mm.ii.) pone dei valori limite sulla *dose efficace*, data dalla somma delle dosi efficaci ricevute per esposizione esterna e impegnate per inalazione o per ingestione a seguito dell'introduzione di radionuclidi verificatesi nel periodo di riferimento. Secondo i più recenti indirizzi nazionali ed internazionali il limite da considerare per l'esposizione a sorgenti di radiazioni artificiali è costituito dal *limite per la non rilevanza radiologica*, fissato in 10 microSv per anno solare, valore al di sotto del quale si può ritenere del tutto trascurabile l'impatto radiologico.

I limiti fissati dalla normativa non sono però direttamente confrontabili con i risultati analitici, che forniscono dei valori di concentrazione di attività, dal momento che si tratta di grandezze di natura diversa. Solo il D. Lgs. 15 febbraio 2016 n. 28 "Attuazione della direttiva 2013/51/EURATOM del Consiglio, del 22 ottobre 2013, che stabilisce requisiti per la tutela della salute della popolazione relativamente alle sostanze radioattive presenti nelle acque destinate al consumo umano" entrato in vigore il 22/03/2016 in sostituzione del D. Lgs. 2 febbraio 2001 n. 31 e s.m.i. "Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano" fissa in particolare le caratteristiche radiometriche delle acque potabili. Tale decreto non è comunque applicabile per le attività svolte nell'anno 2015 per il quale si fa ancora riferimento al D. Lgs. 2 febbraio 2001 n. 31 e s.m.i.

Pertanto, al fine di disporre di uno strumento operativo immediato ed efficace, sono stati ricavati dei *valori soglia per la non rilevanza radiologica*, livelli di riferimento operativi direttamente confrontabili con le concentrazioni di attività misurate nelle varie matrici.

Inoltre si è tenuto conto dei *valori di screening* fissati per alcune grandezze a livello internazionale (World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011) e comunitario (Raccomandazione 2000/473/Euratom). I *valori di screening* costituiscono dei valori di attenzione che suggeriscono di intraprendere azioni finalizzate ad un approfondimento della situazione.

Trattamento statistico dei dati

I valori di concentrazione dei radionuclidi artificiali rilevati nell'ambiente ed imputabili a rilasci degli impianti sono, allo stato attuale, molto inferiori ai livelli di riferimento adottati e questo pone il problema della loro corretta valutazione sia in termini analitici sia di attribuzione.

Sono pertanto stati messi a punto metodi di prova che assicurano *Limiti di rivelabilità* adeguati (si veda il Paragrafo 6) e sono stati adottati opportuni criteri di analisi statistica dei dati che consentano di evidenziare dati anomali rispetto alle serie storiche. Tali dati anomali possono essere indice di:

- rilasci che comportano livelli di contaminazione confrontabili con il fondo ambientale locale (per esempio nei suoli e nei sedimenti)
- incremento di fenomeni di rilascio in atto (per esempio il rilascio di contaminanti nella falda acquifera superficiale).

Disponendo di una adeguata serie storica di dati di misura, si è scelto di effettuare l'analisi statistica dei dati di misura utilizzando l'approccio ai controlli interni della qualità di un laboratorio analitico tramite carte di controllo.

In questo modo per ogni punto di campionamento, ogni matrice ed ogni parametro è stato possibile definire un Limite di Azione, valore della concentrazione di un determinato radionuclide al di sopra del quale è in atto un evento anomalo.

Questi limiti sono utilizzati come valore soglia per le concentrazioni di attività in quelle matrici che sono considerate indicatori ambientali e non vengono utilizzate per il calcolo della dose all'individuo di riferimento della popolazione.

4 ATTIVITÀ SVOLTE DALLA CENTRALE "E. FERMI" NELL'ANNO 2015

Nel corso del 2015 presso la Centrale Nucleare "E. Fermi", oltre alle attività ordinarie di mantenimento in sicurezza dell'impianto, sono state svolte attività propedeutiche al decommissioning per il quale si è concluso l'iter autorizzativo con l'emanazione del D.M. 02/08/2012 con il quale viene concessa a SO.G.I.N. l'autorizzazione alla disattivazione. In particolare:

- nei mesi di giugno e settembre 2015, sono stati effettuati 2 trasporti degli ultimi 47 elementi di combustibile irraggiato che erano ancora stoccati all'interno della piscina del combustibile della Centrale E. Fermi. I trasporti sono avvenuti alla volta dell'impianto francese di La Hague, come previsto dall'Accordo intergovernativo Francia Italia siglato a Lucca il 24 novembre 2006. Si ricorda che l'allontanamento del combustibile irraggiato costituiva l'attività propedeutica allo smantellamento dei sistemi e degli impianti dell'edificio reattore; in particolare, del circuito primario, dei sistemi ausiliari e del vessel assieme con i relativi componenti interni
- sono state effettuate la demolizione e la ricostruzione del locale "Test Tank" ai fini dell'adeguamento a deposito provvisorio di rifiuti radioattivi.
- è stato rimosso il coibente posto sulla testa del reattore tra le penetrazioni dei sistemi di comando delle barre di regolazione e dei setti posti attorno al vessel.

Si segnala inoltre che nel corso del 2015 sono stati avviati i procedimenti di verifica di assoggettabilità a VIA per due progetti presentati da SO.G.I.N. riguardanti l'uno la demolizione e successiva ricostruzione di due depositi per rifiuti radioattivi solidi e l'altro la costruzione di un impianto per il trattamento delle resine esauste basato su tecnologia WOX (Wet Oxidation).

Nell'anno 2015 l'impianto ha effettuato n. 1 scarico di effluenti radioattivi liquidi nel fiume Po.

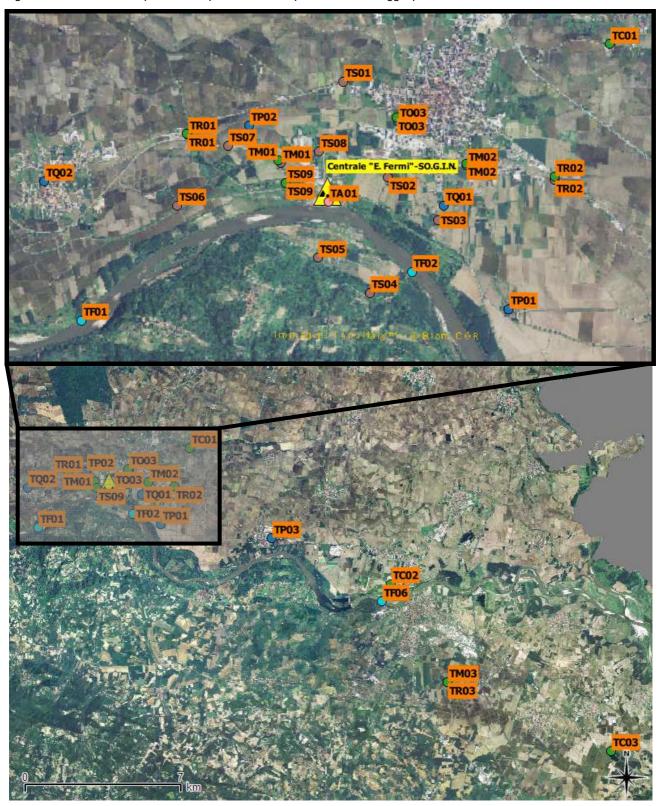
5 LE RETI DI MONITORAGGIO

Nell'anno 2015 la rete di monitoraggio ordinario del sito di Trino è rimasta sostanzialmente invariata nella sua impostazione poiché non sono intervenuti cambiamenti sostanziali dello scenario globale.

Nell'ultimo trimestre è stato introdotto il campionamento del particolato atmosferico in una postazione posta all'interno dell'impianto ed è stata avviata un'indagine straordinaria suggerita dalla valutazione di incidenza predisposta in relazione alla verifica di assoggettabilità a VIA della costruzione dei nuovi depositi. Tale indagine sarà oggetto di apposita relazione.

Tutti i campionamenti sono effettuati secondo precise modalità – definite in una procedura interna – in modo da garantire la significatività e la riproducibilità dei dati di misura.

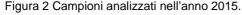
Di seguito sono riportate la Tabella 1 con il piano di monitoraggio ordinario e la cartina (Figura 1) con la dislocazione dei punti di campionamento della rete di monitoraggio ordinario.


Tabella 1 Piano di monitoraggio ordinario del sito nucleare di Trino.

Matrice	Punti di campionamento	Frequenza di campionamento
Acqua potabile	TQ01, TQ02	Semestrale
Acqua di falda superficiale	TO03, TP01, TP02, TP03	Semestrale
Acqua superficiale	TF01, TF06	Semestrale
Cereali	TM01, TM02, TM03, TR01, TR02, TR03	Annuale
Latte	TC01, TC02, TC03	Semestrale
Sedimenti fluviali	TF01, TF02, TF06	Semestrale
Ortaggi	TO03	Semestrale
Erba	TS09	Semestrale
Suolo indisturbato	TS01, TS02, TS03, TS04, TS05, TS06, TS07, TS08, TS09	Semestrale
Suolo coltivato	TM01, TM02, TM03, TR01, TR02, TR03	Annuale
Particolato atmosferico	VA01, TA01	Continua
Fallout	VA01	Continua

Si fa presente che il campionamento del particolato atmosferico in un punto posto all'interno della Centrale (TA01) avviene con la finalità di controllare gli effluenti aeriformi dell'impianto stesso: i dati relativi non possono essere utilizzati per valutazioni di dose alla popolazione.

Figura 1 Distribuzione dei punti di campionamento del piano di monitoraggio per il sito nucleare di Trino.


6 METODOLOGIA DI MISURA

I metodi utilizzati per l'esecuzione delle analisi – contenuti nel "Catalogo prove" di Arpa Piemonte e riportati in Allegato 2 – sono stati scelti per permettere la determinazione quantitativa dei contaminanti maggiormente rilevanti dal punto di vista radioprotezionistico rispetto alla natura degli impianti oggetto del monitoraggio. Sullo stesso campione possono essere eseguite più determinazioni, applicando metodi diversi in funzione dei nuclidi di interesse. Tra questi:

- la spettrometria gamma permette la determinazione simultanea, qualitativa e quantitativa, dei radionuclidi gamma emittenti presenti nella matrice considerata, sia artificiali sia naturali, ed in particolare permette di individuare con elevatissima sensibilità la presenza di radioisotopi quali Cs-137 e Co-60. Può essere eseguita direttamente sul campione senza la necessità di effettuare processi di separazione dei radionuclidi e pertanto viene eseguita sulla quasi totalità dei campioni;
- la determinazione dell'attività alfa totale e beta totale permette la quantificazione dell'attività imputabile a tutti i radionuclidi alfa emettitori e beta emettitori presenti nel campione, senza consentirne l'analisi qualitativa. Rappresenta un utile strumento per un confronto diretto con i valori di screening fissati per la contaminazione del particolato atmosferico e dell'acqua destinata al consumo umano;
- i *metodi radiochimici* prevedono la separazione dei singoli radionuclidi alfa emettitori (Plutonio, Americio, Uranio) e beta emettitori (Stronzio) e la loro successiva determinazione quantitativa; si tratta di analisi estremamente laboriose che non sono applicabili in larga scala;
- la determinazione di *Tritio* prevede la distillazione del campione e viene eseguita sui campioni di acqua destinata al consumo umano e di falda.

Nel grafico di Figura 2 è riportato il numero di campioni – suddivisi per matrice – prelevati ed analizzati nel corso del 2015 nell'ambito delle reti di monitoraggio radiologico ambientale ordinarie e straordinarie del sito nucleare di Trino.

Nel grafico di Figura 3 è invece riportata la distribuzione percentuale delle tipologie di analisi.

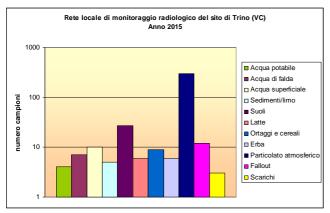
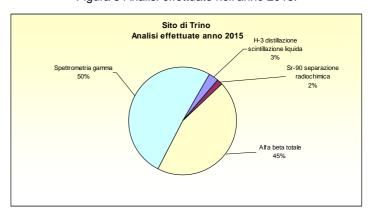



Figura 3 Analisi effettuate nell'anno 2015.

I risultati delle analisi vengono espressi come concentrazioni di attività per il singolo radionuclide riferite alla massa, al volume o alla superficie della matrice considerata (Bq/kg, Bq/l, Bq/m³ e Bq/m² rispettivamente). La sensibilità della misura viene indicata dal *Limite di Rivelabilità*: tale grandezza rappresenta la minima quantità di radioattività che la metodica analitica è in grado di rivelare. Nel caso in cui non si riveli contaminazione da parte di un certo radionuclide verrà comunque

considerato il *Limite di Rivelabilità* come limite superiore per la concentrazione del radionuclide stesso (nelle tabelle si vedrà il simbolo <).

La sensibilità delle misure deve essere tale da garantire dei *Limiti di Rivelabilità* sempre inferiori ai valori soglia per la non rilevanza radiologica e ai *valori di screening*, come riportato in Tabella 2.

Tabella 2 Valori di screening, valori soglia per la non rilevanza radiologica e sensibilità di misura, espresse come Limiti di rivelabilità (ordini di grandezza).

Matrice	Parametro	Limite di rivelabilità Bq/kg, Bq/l, Bq/m³	Valore soglia per la non rilevanza radiologica Bq/kg, Bq/l, Bq/m³	Valore di screening Bq/kg, Bq/l, Bq/m³	Fonte
	α totale	0,1	•	0,5	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
A cours matabile	β totale	0,2	-	1	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
Acqua potabile	Am-241	0,01	0,011	-	
	Cs-137	0,005	1,4	0,1	Raccomandazione 2000/473/Euratom
	Co-60	0,005	0,72	-	
	H-3	2	610	100	D. Lgs. 2 febbraio 2001 n. 31 e s.m.i. Raccomandazione 2000/473/Euratom
	Sr-90	0,005	0,17	0,06	Raccomandazione 2000/473/Euratom
Acqua di falda	α totale	0,1	-	0,5	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
	β totale	0,2	-	1	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
superficiale	Am-241	0,01	0,011	-	
·	Cs-137	0,005	1,4	0,1	Raccomandazione 2000/473/Euratom
	Co-60	0,005	0,72	-	
	H-3	5	610	100	D. Lgs. 2 febbraio 2001 n. 31 e s.m.i. Raccomandazione 2000/473/Euratom
	Sr-90	0,005	0,17	0,06	Raccomandazione 2000/473/Euratom
	α totale	0,1	-	-	
	β totale	0,2	-	0,6	Raccomandazione 2000/473/Euratom
Acqua	Am-241	0,01	-	-	
superficiale	Cs-137	0,005	-	1	Raccomandazione 2000/473/Euratom
	Co-60	0,005	•	-	
	H-3	5	-	-	
	Sr-90	0,005	-	-	
Cereali	Cs-137	0,3	7	-	
	Co-60 Cs-137	0,3 3	10 -	-	
Erba	Co-60	3	-	<u>-</u>	
	Cs-137	0.2	1,9	0,5	Raccomandazione 2000/473/Euratom
Latte	Co-60	0,2	0,72	-	Raddomandazione 2000/47 3/Ediatom
	Sr-90	0,02	0,72	0.2	Raccomandazione 2000/473/Euratom
<u> </u>	Cs-137	0,3	14	-	. tassimandaziono 2000/41 0/Ediatom
Ortaggi a foglia	Co-60	0,3	21	-	
	α totale ritardata	0,00005	-	-	
Particolato atmosferico	β totale ritardata	0,0005	-	0,005	Raccomandazione 2000/473/Euratom
aunosienco	Cs-137	0,0001	0,27	0,03	Raccomandazione 2000/473/Euratom
	Co-60	0,0001	0,12	-	
	I-131	0,0003	0,094	-	

ARPA Ente di diritto pubblico – Dipartimento Tematico Radiazioni

Matrice	Parametro	Limite di rivelabilità Bq/kg, Bq/l, Bq/m³	Valore soglia per la non rilevanza radiologica Bq/kg, Bq/l, Bq/m³	Valore di screening Bq/kg, Bq/l, Bq/m³	Fonte
Sedimenti	Am-241	3	-	-	
fluviali	Cs-137	0,3	-	-	
iluviali	Co-60	0,3	-	-	
Suolo	Am-241	3	22000	-	
indisturbato	Cs-137	0,3	460	-	
แนเรเนเมสเบ	Co-60	0,3	110	-	
	Am-241	3	20000	-	
Suolo coltivato	Cs-137	0,3	260	-	
	Co-60	0,3	55	-	

Al fine di garantire la qualità dei dati erogati il laboratorio della struttura Siti Nucleari:

- è accreditato UNI CEI EN ISO/IEC 17025 (certificato ACCREDIA n. 0203) per i principali metodi di prova (ALLEGATO 2);
- è certificato UNI EN ISO 9001 (certificato SAI GLOBAL ITALIA n. 1625);
- partecipa con cadenza annuale a circuiti di interconfronto nazionali ed internazionali (EC, IAEA ed altri).

L'accreditamento testimonia la competenza tecnica del Laboratorio e la conformità del sistema di gestione alla norma UNI CEI EN ISO/IEC 17025 ed a qualsiasi altro criterio prescritto dall'Ente di accreditamento.

La certificazione testimonia la conformità del sistema di gestione alla norma UNI EN ISO 9001 ed a qualsiasi altro criterio prescritto dall'Ente di certificazione.

7 STRUMENTAZIONE UTILIZZATA

Per l'esecuzione delle misure radiometriche è stata utilizzata la seguente strumentazione:

- catene spettrometriche gamma con rivelatore al germanio iperpuro di tipo p o di tipo n e software di elaborazione ORTEC "Gamma Vision";
- contatori proporzionali a flusso di gas Berthold mod. LB 770;
- contatore a scintillazione liquida Perkin Elmer mod. Ultra Low Level Quantulus 1220.

8 ATTIVITÀ DI MONITORAGGIO

8.1. Monitoraggio ambientale ordinario – risultati delle misure

In questa sezione sono riportati in forma sintetica i risultati delle misure insieme ad alcuni grafici con gli andamenti storici delle concentrazioni dei radionuclidi di interesse nelle principali matrici alimentari ed ambientali, mentre per il dettaglio dei dati analitici si rimanda alle tabelle dell'Allegato 1. Per agevolare la comprensione dei risultati delle misure eseguite, nei grafici sono riportate le linee corrispondenti ai livelli operativi caso per caso adottati (si veda il Paragrafo 3): questo consente di valutare facilmente se i valori di concentrazione sono accettabili e quanto si discostano dai valori limite.

Nei grafici il punto rappresenta il limite di rivelabilità per il radionuclide rappresentato, mentre la barra verticale indica la presenza di contaminante con incertezza pari all'estensione della barra. Si segnala altresì che tutti i risultati delle misure sono liberamente consultabili, in modo interattivo, nella sezione Radiazioni del Geoportale di Arpa Piemonte.

Come già introdotto al Paragrafo 2, il monitoraggio radiologico ambientale consente, in ultima analisi, di stimare la dose efficace alla popolazione, grandezza proporzionale al rischio indotto dall'esposizione alle radiazioni ionizzanti. Il calcolo della dose efficace deve necessariamente tenere conto delle tre possibili vie di esposizione: *ingestione*, *inalazione* ed *irraggiamento*. Per questo motivo i risultati delle misure sono di seguito riportati per gruppi di matrici che contribuiscono ad una determinata via di esposizione.

Via di esposizione: ingestione

Acqua potabile

- Fa parte integrante della dieta.
- Consumo medio pro capite 548 l/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 1.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Contributo alla dose 0,179 microSv/anno.

Nei campioni di acqua potabile distribuita dall'acquedotto di Trino (TQ01) e da quello di Palazzolo Vercellese (TQ02) non è mai stata rivelata la presenza di radionuclidi di origine artificiale. In particolare i risultati ottenuti si sono sempre mantenuti al di sotto dei *valori di screening* fissati da World Health Organization e dei *valori soglia per la non rilevanza radiologica*.

Nei grafici di Figura 4 e Figura 5 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni delle attività Alfa totale e Beta totale nei campioni di acqua potabile distribuita dall'acquedotto di Trino (TQ01). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization.

Le concentrazioni di attività Alfa totale e Beta totale misurate in alcuni campioni sono attribuibili a radionuclidi di origine naturale, come evidenziato anche dalle misure di spettrometria gamma.

I risultati ottenuti si sono comunque sempre mantenuti nettamente al di sotto dei valori di screening e dei valori soglia per la non rilevanza radiologica.

Figura 4 Andamento della concentrazione Alfa totale nell'acqua potabile campionata nel punto TQ01 (Bq/l). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization.

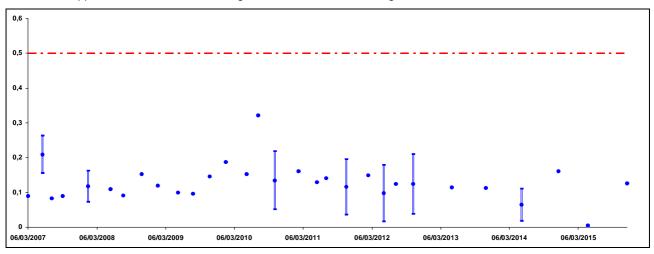
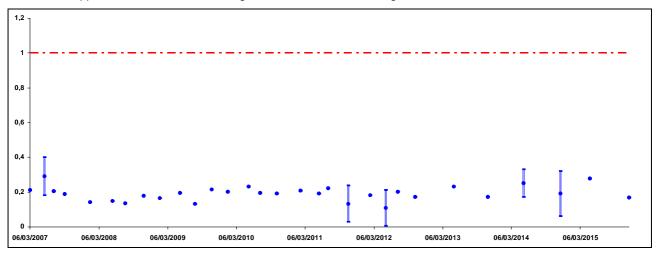



Figura 5 Andamento della concentrazione Beta totale nell'acqua potabile campionata nel punto TQ01 (Bq/l). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization.

Acqua di falda superficiale

- Può far parte della dieta ed essere utilizzata a scopo irriguo.
- Consumo medio pro capite 548 l/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 2.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Contributo alla dose 0,226 microSv/anno.

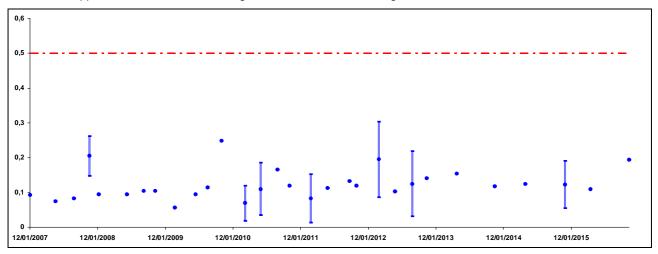
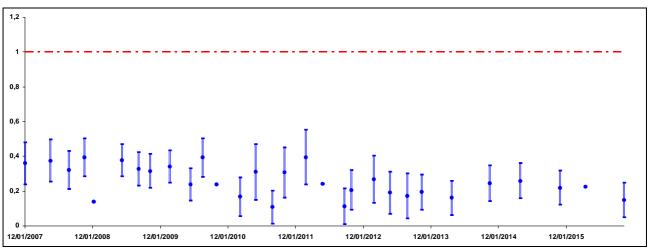
Nell'acqua di falda superficiale campionata dai pozzi privati nei punti TO03, TP01, TP02 e TP03 non è mai stata rivelata la presenza di radionuclidi di origine artificiale. Le concentrazioni di attività Alfa totale e Beta totale misurate in alcuni campioni sono attribuibili a radionuclidi di origine naturale, come evidenziato anche dalle misure di spettrometria gamma.

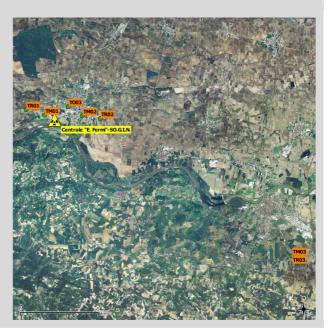
I risultati ottenuti si sono comunque sempre mantenuti nettamente al di sotto dei valori di screening e dei valori soglia per la non rilevanza radiologica.

Si segnala che il punto TO03, a partire dal secondo semestre 2015, non è più disponibile perché il fondo che ospita il pozzo non viene più coltivato.

Nei grafici di Figura 6 e Figura 7 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni delle attività Alfa totale e Beta totale nei campioni prelevati nel pozzo privato TP01. La linea orizzontale rappresenta il *valore di screening* fissato da World Health Organization.

Figura 6 Andamento della concentrazione Alfa totale nell'acqua potabile campionata nel punto TP01 (Bq/l). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization.

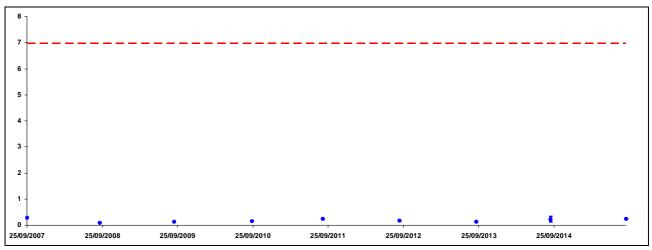




Figura 7 Andamento della concentrazione Beta totale nell'acqua potabile campionata nel punto TP01 (Bq/l). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization.

Prodotti di coltivazione

- Cereali e ortaggi fanno parte integrante della dieta.
- Consumo medio pro capite 55÷124 kg/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 3.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Contributo alla dose 0,443 microSv/anno.

Negli ortaggi di produzione locale campionati nel punto TO03, nel mais campionato nei punti, TM02, TM03 e nel riso campionato nei punti TR01, TR02, TR03 non è stata riscontrata traccia di contaminazione da radionuclidi artificiali.


I valori dei *Limiti di rivelabilità* sono sempre stati inferiori ai valori soglia per la non rilevanza radiologica.

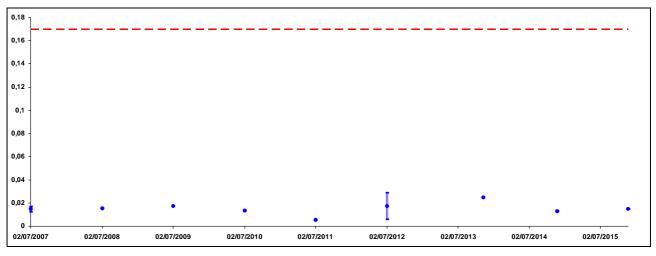
Si segnala che il punto TO03, a partire dal secondo semestre 2015, non è più disponibile perché il fondo che ospita il pozzo non viene più coltivato

Nel grafico di Figura 8 è riportato a titolo esemplificativo l'andamento della concentrazione di Cs-137 nel mais prelevato nel punto TM01. La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Figura 8 Andamento della concentrazione di Cs-137 nel mais prelevato nel punto TM01 (Bq/kg). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Latte bovino crudo

- Fa parte integrante della dieta.
- Consumo medio pro capite 256 l/anno per i lattanti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 4.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Contributo alla dose 0,743 microSv/anno.



Nel latte bovino crudo di produzione locale campionato presso le cascine TC01, TC02 e TC03 non è mai stata riscontrata traccia di contaminazione da radionuclidi artificiali. I valori dei *Limiti di rivelabilità* sono sempre inferiori ai *valori soglia per la non rilevanza radiologica*.

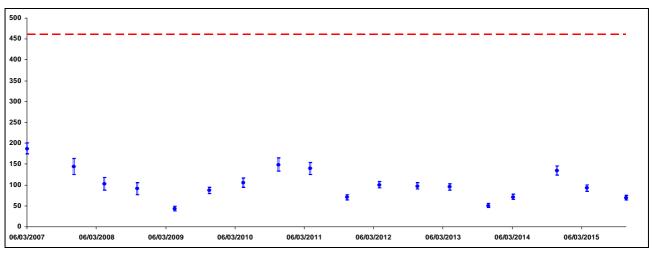
Nel grafico di Figura 9 è riportato a titolo esemplificativo l'andamento della concentrazione di Sr-90 nel latte vaccino crudo campionato nel punto TC01. La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Figura 9 Andamento della concentrazione di Sr-90 nel latte vaccino crudo campionato nel punto TC01 (Bq/l). La linea orizzontale rappresenta il valore soglia per la non rilevanza radiologica.

Via di esposizione: irraggiamento

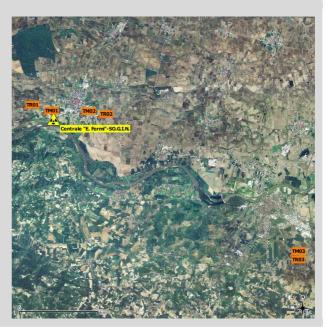
Suolo indisturbato

- La contaminazione radioattiva è confinata nello strato superficiale.
- Fattore di occupazione: 1 ora/giorno.
- Dettaglio dei risultati delle misure in Tabella A 5.
- Presenza di Cs-137.
- Contributo alla dose 0.554 microSv/anno.


Nello strato superficiale dei suoli campionati all'esterno del sito è presente contaminazione da Cs-137 del tutto imputabile all'incidente di Chernobyl e confrontabile con le concentrazioni comunemente riscontrabili in questa matrice per altre zone della provincia e della regione. Sulla base dei dati riscontrati negli ultimi 10 anni nelle zone circostanti la Centrale "E. Fermi" si evidenzia che i valori di concentrazione di Cs-137 nei suoli indisturbati sono compresi nell'intervallo 10÷100 Bq/kg: i valori minimi si riscontrano nel punto TS09 mentre quelli massimi nel punto TS04. Tutti i valori si sono sempre mantenuti al di sotto dei *valori soglia per la non rilevanza radiologica*.

ARPA Ente di diritto pubblico – Dipartimento Tematico Radiazioni

Nel grafico di Figura 10 è riportato a titolo esemplificativo l'andamento della concentrazione di Cs-137 nel suolo indisturbato campionato nel punto TS04. La linea orizzontale rappresenta il *valore* soglia per la non rilevanza radiologica.

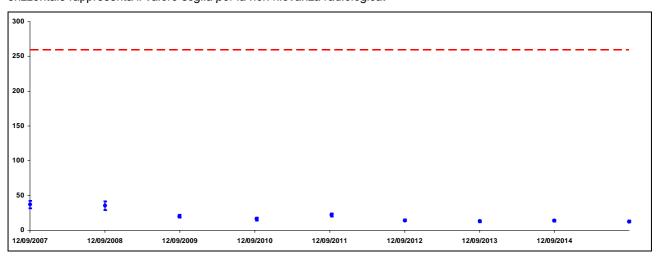

Figura 10 Andamento della concentrazione di Cs-137 nel suolo indisturbato campionato nel punto TS04 (Bq/kg). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Suolo coltivato

è

- La contaminazione radioattiva uniformemente distribuita.
- Fattore di occupazione: 1 ora/giorno.
- Dettaglio dei risultati delle misure in Tabella A 6.
- Presenza di Cs-137.
- Contributo alla dose 0,507 microSv/anno.

Nei suoli coltivati a mais TM01, TM02, TM03 e a riso TR01, TR02, TR03 è presente contaminazione da Cs-137 del tutto imputabile all'incidente di Chernobyl e confrontabile con le concentrazioni comunemente riscontrabili in questa matrice per altre zone della provincia e della regione. Sulla base dei dati riscontrati negli ultimi 10 anni nelle zone circostanti la Centrale "E.


ARPA Ente di diritto pubblico – Dipartimento Tematico Radiazioni

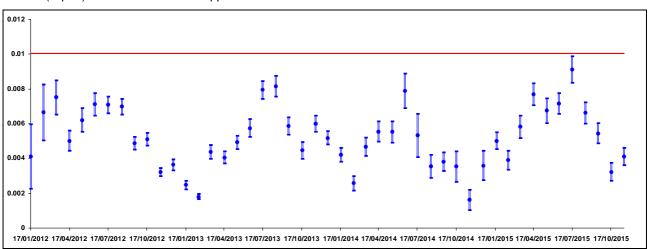
Fermi" si evidenzia che i valori di concentrazione di Cs-137 nei suoli coltivati sono compresi nell'intervallo 10÷30 Bq/kg: i valori osservati risultano pressoché costanti a causa del rimescolamento degli strati di suolo dovuto all'aratura. Tutti i valori si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica*.

Nel grafico di Figura 11 è riportato a titolo esemplificativo l'andamento della concentrazione di Cs-137 nel suolo coltivato campionato nel punto TR02. La linea orizzontale rappresenta il *valore* soglia per la non rilevanza radiologica.

Figura 11 Andamento della concentrazione di Cs-137 nel suolo coltivato campionato nel punto TR02 (Bq/kg). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Via di esposizione: inalazione

Particolato atmosferico - postazione sede Vercelli


- Il punto di campionamento è presso la sede Arpa di Vercelli, per cui i dati relativi possono essere utilizzati per valutazioni di dose alla popolazione.
- Dettaglio dei risultati delle misure in
- Tabella A 7 e Tabella A 8.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Contributo alla dose 0,000639 microSv/anno.

Il particolato atmosferico è campionato in continuo presso la sede Arpa di Vercelli con la finalità di valutare lo stato della contaminazione radioattiva dell'aria per stimare la dose da inalazione alla popolazione.

Le concentrazioni di attività alfa totale e beta totale ritardate sono imputabili alla presenza di radionuclidi di origine naturale a vita non breve o cosmogenici, come Be-7 (Figura 12).

Figura 12 Andamento della concentrazione di Be-7 nel particolato atmosferico campionato presso la sede Arpa di Vercelli (Bq/m³). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

Nel grafico di Figura 13 è riportato l'andamento delle misure di *screening* di attività Alfa totale sui filtri giornalieri. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati. Nel grafico di Figura 14 è riportato l'andamento delle misure di *screening* di attività Beta totale sui filtri giornalieri. La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom. Nel corso del mese di dicembre si è osservato un incremento della concentrazione di attività beta totale correlabile all'aumentato inquinamento atmosferico causato dalla prolungata assenza di precipitazioni ed osservato anche negli altri punti di campionamento, in particolare nel punto di campionamento posto all'interno della Centrale "E. Fermi" (Figura 19). Nel corso dell'anno non è mai stato riscontrato il superamento dei *valori soglia per la non rilevanza radiologica* per radionuclidi di origine artificiale – come risulta dalle misure di spettrometria gamma – e non si è evidenziato un andamento anomalo rispetto alla serie storica.

Figura 13 Andamento delle misure di screening di attività Alfa totale nel particolato atmosferico campionato presso la sede Arpa di Vercelli (Bq/m³). La linea orizzontale rappresenta il *limite di azione* per l'attività Alfa totale.

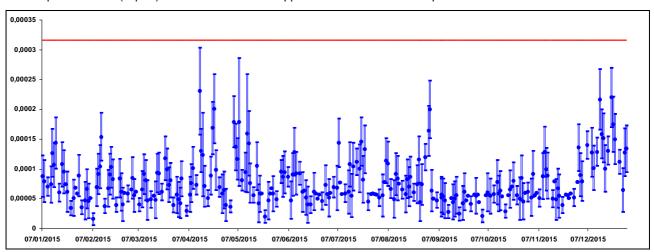
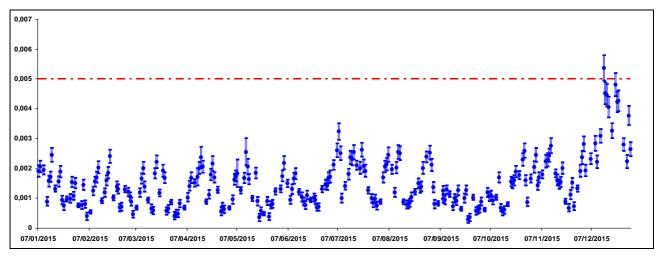
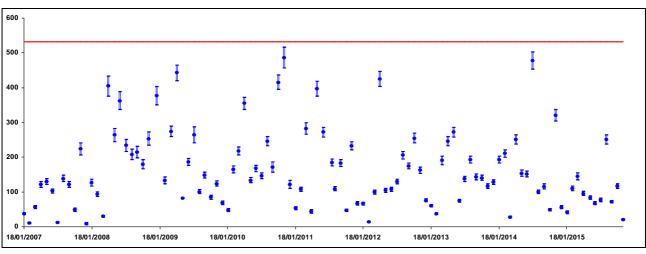




Figura 14 Andamento delle misure di screening di attività Beta totale nel particolato atmosferico campionato presso la sede Arpa di Vercelli (Bq/m³). La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom.

Indicatori ambientali

Fallout

- Il punto di campionamento è presso la sede Arpa di Vercelli.
- E' un indicatore ambientale utile per valutare eventuali ricadute al suolo.
- Dettaglio dei risultati delle misure in Tabella A 9.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.



Nel *Fallout* – o ricaduta al suolo – campionato presso la sede Arpa di Vercelli non è mai stata rivelata la presenza di radionuclidi di origine artificiale. Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti *limiti di azione*. Nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.

Nel grafico di Figura 15 è riportato a titolo esemplificativo l'andamento della concentrazione del radionuclide cosmogenico Be-7. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

Figura 15 Andamento della concentrazione di Be-7 nel *Fallout* campionato presso la sede Arpa di Vercelli (Bq/m²). La linea orizzontale rappresenta il *limite di azione*.

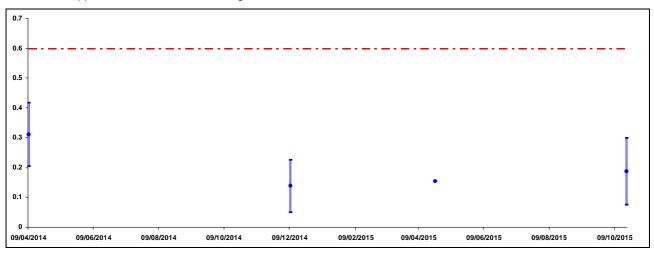
Erba

- E' un indicatore ambientale utile per valutare eventuali ricadute al suolo.
- Dettaglio dei risultati delle misure in Tabella A 10.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.
- Nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.

Nell'erba essiccata i risultati delle misure sono sempre inferiori al *Limite di rivelabilità* strumentale. Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i

pertinenti *limiti di azione*. Nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.

Acqua superficiale


- Costituisce un indicatore ambientale utile per evidenziare eventuali accumuli.
- Dettaglio dei risultati delle misure in Tabella A 11.
- Nel corso del 2015 non è stata rivelata la presenza di radionuclidi di origine artificiale.

Nell'acqua superficiale del Fiume Po campionata nei punti TF01 e TF06 non è stata rivelata la presenza di radionuclidi artificiali. Poiché tali punti sono stati inseriti nel programma di campionamento nel 2014, così come riportato nel Paragrafo 5 della presente relazione, non si dispone ancora di una serie storica di dati e non è dunque ancora possibile definire i *limiti di azione*. Nel grafico di Figura 16 è riportato a titolo esemplificativo l'andamento della concentrazione dell'attività Beta totale nel punto TF06. La linea orizzontale rappresenta il valore di screening secondo la Raccomandazione 2000/473/Euratom.

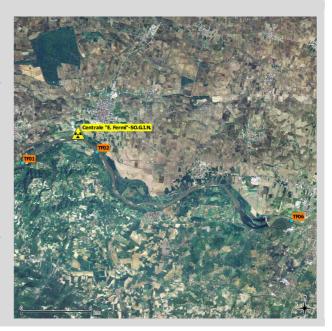
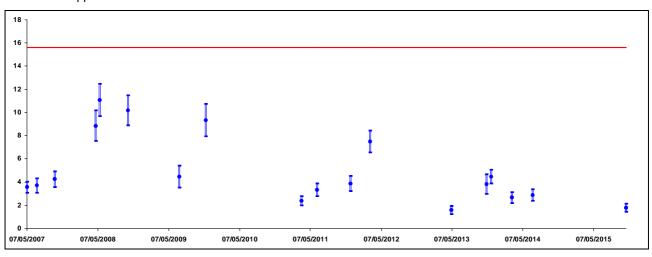


Figura 16 Andamento della concentrazione Beta totale nell'acqua superficiale prelevata nel punto TF06 (Bq/l). La linea orizzontale rappresenta il valore di screening secondo la Raccomandazione 2000/473/Euratom.

Sedimenti fluviali

- Costituiscono un indicatore ambientale utile per evidenziare eventuali accumuli.
- Dettaglio dei risultati delle misure in Tabella A 12.
- Presenza di Cs-137.
- Nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.

I sedimenti fluviali del Fiume Po sono campionati a monte (TF01) e a valle (TF02, TF06) del sito. In particolare il punto TF02 è utilizzato per il controllo degli scarichi di effluenti radioattivi liquidi. In tutti i campioni è presente contaminazione da Cs-137 con concentrazioni confrontabili con quelle comunemente riscontrabili in questa matrice per altre zone della provincia e della regione e non si evidenziano situazioni di accumulo.


Dal momento che per questa matrice non sono definibili valori soglia per la non rilevanza radiologica la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti limiti di azione, non ancora definibili per il punto TF06 non disponendo di una serie

storica. Per i punti TF01 e TF02 nel corso del 2015 non si è evidenziato un andamento anomalo rispetto alla serie storica.

Nel grafico di Figura 17 è riportato a titolo esemplificativo l'andamento della concentrazione di Cs-137 nei sedimenti campionati nel punto TF02. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

Figura 17 Andamento della concentrazione di Cs-137 nei sedimenti campionati nel punto TF02 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

Particolato atmosferico – postazione interna Centrale "E. Fermi"

- Il punto di campionamento posizionato all'interno della Centrale "E. Fermi" è finalizzato al controllo degli scarichi di effluenti radioattivi aeriformi, per cui i dati relativi non possono essere utilizzati per valutazioni di dose alla popolazione.
- Dettaglio dei risultati delle misure in Tabella A 13 e Tabella A 14.
- Nel corso del 2015 non è mai stata rivelata la presenza di radionuclidi di origine artificiale.

Il particolato atmosferico è prelevato in continuo, a partire da fine novembre 2015, in un punto posto all'interno della Centrale "E. Fermi" (TA01) con la finalità di controllare gli effluenti aeriformi

dell'impianto stesso: i dati relativi non possono pertanto essere utilizzati per valutazioni di dose alla popolazione. Le concentrazioni di attività alfa totale e beta totale ritardate sono imputabili alla presenza di radionuclidi di origine naturale a vita non breve o cosmogenici, come Be-7.

Nel grafico di Figura 18 è riportato l'andamento delle misure di screening di attività Alfa totale sui filtri giornalieri. La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati. Nel grafico di Figura 19 è riportato l'andamento delle misure di screening di attività Beta totale sui filtri giornalieri. La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom. Nel corso del mese di dicembre si è osservato un incremento della concentrazione di attività beta totale correlabile all'aumentato inquinamento atmosferico causato dalla prolungata assenza di precipitazioni ed osservato anche negli altri punti di campionamento, in particolare presso la sede Arpa di Vercelli (Figura 14).

Nel corso dell'anno non è mai stato riscontrato il superamento dei *valori soglia per la non rilevanza radiologica* per radionuclidi di origine artificiale – come risulta dalle misure di spettrometria gamma – e non si è evidenziato un andamento anomalo rispetto alla serie storica.

Figura 18 Andamento delle misure di screening di attività Alfa totale nel particolato atmosferico campionato presso la centrale "E. Fermi" di Trino (Bq/m³). La linea orizzontale rappresenta il limite di azione per l'attività Alfa totale.

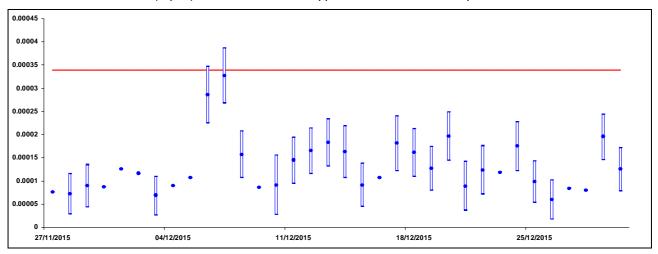
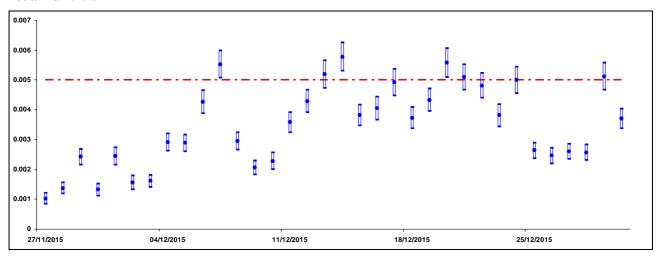



Figura 19 Andamento delle misure di screening di attività Beta totale nel particolato atmosferico campionato presso la centrale "E. Fermi" di Trino (Bq/m³). La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom.

9 ATTIVITÀ DI CONTROLLO

9.1 Controllo degli scarichi di effluenti radioattivi

L'impianto rilascia nell'ambiente effluenti radioattivi liquidi ed aeriformi nel rispetto di precise prescrizioni assegnate in sede autorizzativa.

Arpa Piemonte, in accordo con ISPRA e con gli Esercenti, effettua controlli sistematici sui campioni di effluenti liquidi – al fine di verificare il rispetto delle formule di scarico – e indagini ambientali specifiche in occasione di ogni scarico.

II D.M. 02/08/2012 - con il quale viene concessa a SO.G.I.N. l'autorizzazione alla disattivazione – assegna all'impianto nuove formule di scarico basate sul principio del non superamento del limite di non rilevanza radiologica fissato dalla normativa vigente in 10 microSv/anno.

In particolare stabilisce che nel corso di un anno solare il quantitativo di radioisotopi scaricati nell'ambiente sia tale da non portare al superamento delle dosi di:

- 8 microSv/anno per gli scarichi liquidi
- 2 microSv/anno per gli scarichi aeriformi.

In Tabella 3 sono riassunti gli impegni delle formule di scarico per gli effluenti radioattivi liquidi riportando il confronto con gli anni precedenti. Le valutazioni sono effettuate sulla base dei dati forniti da SO.G.I.N. fino all'anno 2008 e dei dati Arpa in seguito.

Tabella 3 Impegno delle formule di scarico in acqua per effluenti radioattivi liquidi.

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Impegno formula di scarico	9,2%	3,4%	2,3%	2,6%	1,6%	1,3%	1,3%	1,03%	0,01%	0,033%	0,0067%

I controlli ambientali effettuati dopo ogni scarico di effluenti radioattivi liquidi hanno consentito di escludere fenomeni di accumulo a conferma della corretta diluizione degli scarichi, come si evidenzia dal grafico di Figura 17.

Sugli effluenti aeriformi è stato avviato il controllo indiretto attraverso la postazione di campionamento del particolato atmosferico posta all'interno della Centrale (Paragrafo 8).

ARPA Ente di diritto pubblico – Dipartimento Tematico Radiazioni

9.2 Controllo durante le operazioni di trasporto del combustibile nucleare irraggiato

Nel corso del 2015 sono stati effettuati il sesto ed il settimo dei 10 trasporti che, nell'ambito dell'Accordo Intergovernativo tra il Governo Italiano e quello Francese, prevedono l'invio di tutto il combustibile nucleare irraggiato dal Deposito Avogadro di Saluggia (VC) e dalla Centrale nucleare di Trino (VC) all'impianto di riprocessamento AREVA di La Hague (F).

In particolare i due trasporti in oggetto sono stati effettuati dalla Centrale di Trino.

In analogia a quanto avvenuto per le precedenti campagne di trasporto di combustibile nucleare irraggiato, Arpa Piemonte è stata impegnata su due fronti: controlli di Ente Terzo e monitoraggio ambientale.

I controlli effettuati come Ente Terzo sui cask in uscita dal Deposito Avogadro ed i risultati delle misure ambientali effettuate - disponibili sul sito www.arpa.piemonte.it nella sezione dedicata ai Siti nucleari - hanno evidenziato che:

- sono stati rispettati i limiti fissati dalla IAEA per il trasporto di materie radioattive;
- le operazioni di trasferimento nel loro complesso intese come caricamento del combustibile nel cask e trasporto dello stesso dalla Centrale di Trino al confine italofrancese – non hanno dato origine a fenomeni di contaminazione ambientale;
- non si sono registrate significative variazioni del rateo di dose ambientale γ H*(10) rispetto al fondo naturale medio della zona.

Pertanto il sesto ed il settimo trasporto di combustibile nucleare irraggiato non hanno prodotto un impatto radiologico significativo sull'ambiente e sulla popolazione.

10 VALUTAZIONI DOSIMETRICHE

Sulla base dei dati riportati nei paragrafi precedenti è possibile calcolare la *dose efficace* per gli *individui di riferimento* della popolazione. Pur assumendo ipotesi cautelative, risulta ampiamente rispettato il limite di non rilevanza radiologica di 10 microSv/anno per gli *individui di riferimento*. In Tabella 4 è riportata la stima della *dose efficace* agli *individui di riferimento* della popolazione per l'anno 2015.

Sono stati considerati i contributi dei radionuclidi di riferimento, anche se al di sotto dei Limiti di rivelabilità. Per i valori inferiori al *Limite di rivelabilità* si è assunta una distribuzione rettangolare tra zero ed il *Limite di rivelabilità* stesso: in questo modo anche se non è stata rivelata la presenza di uno dei radionuclidi di riferimento il suo contributo alla dose non sarà zero. Si sottolinea che questo approccio, notevolmente cautelativo, può portare all'apparente paradosso di matrici in cui non è mai stata rivelata la presenza di radionuclidi che forniscono, però, un contributo alla dose non nullo

Le valutazioni sopra riportate permettono di dimostrare l'adeguatezza delle strategie di controllo adottate.

Tabella 4 Stima della dose efficace alla popolazione – anno 2015.

Via critica	Matrice	Dose microSv/anno
Ingestione	Acqua potabile	0,179
	Acqua di falda superficiale	0,226
	Prodotti di coltivazione	0,443
	Latte bovino crudo	0,743
Inalazione	Particolato atmosferico	0,000639
Irraggiamento	Suolo indisturbato	0,554
	Suolo coltivato	0,507
Totale		2,651
Limite non rilevanza radiologica		10

In Figura 20 sono rappresentati i contributi percentuali alla dose efficace.

Contributi alla dose efficace - anno 2015 Acqua potabile Acqua di falda Suolo coltivato superficiale 19% 9% Prodotti di coltivazione 17% Suolo indisturbato 21% Particolato atmosferico 0,02% Latte bovino crudo 27%

Figura 20 Contributi percentuali alla dose efficace.

11 VALUTAZIONI CONCLUSIVE

I dati relativi alle misure effettuate nell'anno 2015 nell'ambito del programma ordinario hanno confermato l'assenza di contaminazioni ambientali imputabili alle attività svolte dall'impianto. Nel corso del mese di dicembre si è osservato un generale incremento della concentrazione di attività beta totale nel particolato atmosferico correlabile all'aumentato inquinamento atmosferico

causato dalla prolungata assenza di precipitazioni ed osservato anche negli altri punti di campionamento.

Inoltre non si sono mai evidenziati andamenti anomali rispetto alle serie storiche dei dati.

Il calcolo della dose efficace agli individui di riferimento della popolazione ha confermato che è stato rispettato il limite di non rilevanza radiologica di 10 microSv/anno, come suggerito dal rispetto dei livelli di riferimento adottati.

ALLEGATO 1 - Risultati delle misure

Tabella A 1 Risultati delle misure sui campioni di acqua potabile (Bq/l).

Punto	Campione	Data campionamento	Alfa totale	Beta totale	Am-241	Cs-137	Co-60	H-3	Sr-90
TQ01	15/020619	24/04/2015	< 0,00528	< 0,279	< 0,00476	< 0,00423	< 0,00382	-	-
TQ01	15/058794	19/11/2015	< 0,126	< 0,169	< 0,0131	< 0,00562	< 0,0033	< 2,01	< 0,00399
TQ02	15/020620	24/04/2015	< 0,113	< 0,145	< 0,00931	< 0,00551	< 0,00733	-	-
TQ02	15/058795	19/11/2015	< 0,110	< 0,209	< 0,0168	< 0,00554	< 0,00113	< 1,73	< 0,00406

Tabella A 2 Risultati delle misure sui campioni di acqua di falda superficiale (Bq/l).

Punto	Campione	Data campionamento		Alfa totale		Beta totale		Am-241	Cs-137	Co-60	H-3	Sr-90
TO03	15/025564	22/05/2015	<	0,121		0,261 ± 0,093	<	0,0241	< 0,00227	< 0,00257	-	-
TP01	15/020623	24/04/2015	<	0,109	<	0,225	<	0,00775	< 0,00244	< 0,00534	-	-
TP01	15/058796	19/11/2015	<	0,194		$0,150 \pm 0,099$	<	0,0132	< 0,00584	< 0,00208	< 1,77	< 0,00600
TP02	15/020617	24/04/2015	<	0,105	<	0,203	<	0,0115	< 0,00457	< 0,00576	-	-
TP02	15/058792	19/11/2015	<	0,140	<	0,227	<	0,0174	< 0,00135	< 0,00474	< 1,75	< 0,00581
TP03	15/020618	24/04/2015	<	0,0765	<	0,176	<	0,0154	< 0,00589	< 0,00482	-	-
TP03	15/058790	19/11/2015		0,110 ± 0,057		0,113 ± 0,078	<	0,0084	< 0,00378	< 0,00358	< 1,73	< 0,00556

Tabella A 3 Risultati delle misure sui campioni di alimenti di produzione locale (Bq/kg).

Alimento	Punto	Campione	Data campionamento	Cs-137	Co-60
Ortaggi a foglia e erbe fresche	TO03	15/025565	22/05/2015	< 0,167	< 0,223
Cereali e derivati - mais	TM01	15/046769	09/09/2015	< 0,250	< 0,409
Cereali e derivati - mais	TM02	15/046773	09/09/2015	< 0,176	< 0,337
Cereali e derivati - mais	TM03	15/046816	09/09/2015	< 0,318	< 0,439
Cereali e derivati - riso	TR01	15/046767	09/09/2015	< 0,277	< 0,141
Cereali e derivati - riso	TR02	15/046771	09/09/2015	< 0,167	< 0,172
Cereali e derivati - riso	TR03	15/046814	09/09/2015	< 0,148	< 0,320

Tabella A 4 Risultati delle misure sui campioni di latte vaccino crudo di produzione locale (Bq/I).

Punto	Campione	Data campionamento	Cs-137	Co-60	Sr-90
TC01	15/007693	10/02/2015	< 0,0859	< 0,0423	-
TC01	15/058787	19/11/2015	< 0,267	< 0,000264	< 0,0151
TC02	15/007695	10/02/2015	< 0,154	< 0,186	-
TC02	15/058788	19/11/2015	< 0,124	< 0,0463	< 0,0132
TC03	15/007696	10/02/2015	< 0,0457	< 0,188	-
TC03	15/058829	20/11/2015	< 0,0806	< 0,0565	< 0,0128

Tabella A 5 Risultati delle misure sui campioni di suolo indisturbato – strato superficiale 0-5 cm (Bq/kg).

Punto	Campione	Data campionamento	Am-241	Cs-137	Co-60
TS01	15/017496	02/04/2015	< 1,99	17,0 ± 1,6	< 0,482
TS01	15/055367	26/10/2015	< 0,867	8,44 ± 0,97	< 0,635
TS02	15/017139	27/03/2015	< 2,27	15,3 ± 1,5	< 0,351
TS02	15/055632	27/10/2015	< 2,56	10,7 ± 1,2	< 0,495
TS03	15/017497	02/04/2015	< 2,63	13,5 ± 1,4	< 0,721
TS03	15/055368	26/10/2015	< 2,86	10,9 ± 1,2	< 1,61
TS04	15/017499	02/04/2015	< 3,21	92,0 ± 7,5	< 0,491
TS04	15/055369	26/10/2015	< 3,15	69,5 ± 5,7	< 1,19
TS05	15/017500	02/04/2015	< 2,14	13,1 ± 1,4	< 0,714
TS05	15/055370	26/10/2015	< 1,02	5,25 ± 0,63	< 0,465
TS06	15/017140	27/03/2015	< 3,27	24,8 ± 2,4	< 0,734
TS06	15/055634	27/10/2015	< 2,73	16,1 ± 1,6	< 0,520
TS07	15/017142	27/03/2015	< 1,60	22,4 ± 2,1	< 0,482
TS07	15/055635	27/10/2015	< 2,66	27,6 ± 2,5	< 0,960
TS08	15/017145	27/03/2015	< 2,05	25,2 ± 2,4	< 1,23
TS08	15/055636	27/10/2015	< 3,28	16,8 ± 1,6	< 0,739
TS09	15/017147	27/03/2015	< 3,68	11,8 ± 1,4	< 0,833
TS09	15/034643	30/06/2015	< 2,31	13,6 ± 1,5	< 0,242

Tabella A 6 Risultati delle misure sui campioni di suolo coltivato (Bq/kg).

Punto	Campione	Data campionamento	Am-241	Cs-137	Co-60
TM01	15/046768	09/09/2015	< 2,46	12,4 ± 1,4	< 0,956
TM02	15/046772	09/09/2015	< 2,32	10,1 ± 1,2	< 0,457
TM03	15/046815	09/09/2015	< 3,55	$8,18 \pm 0,94$	< 0,681
TR01	15/046766	09/09/2015	< 1,81	$7,65 \pm 0,87$	< 0,407
TR02	15/046770	09/09/2015	< 2,78	12,5 ± 1,3	< 1,34
TR03	15/046813	09/09/2015	< 3,49	16,0 ± 1,7	< 1,31

Tabella A 7 Risultati delle misure sui campioni compositi mensili di particolato atmosferico prelevati presso il punto di campionamento di Vercelli (Bq/m³).

Punto	Campione	Inizio campionamento	Fine campionamento	Cs-137	Be-7
VA01	15/008735	07/01/2015	02/02/2015	< 0,0000265	0,0108 ± 0,0010
VA01	15/014860	02/02/2015	02/03/2015	< 0,0000276	0,00390 ± 0,00054
VA01	15/019903	02/03/2015	01/04/2015	< 0,0000259	0,00582 ± 0,00064
VA01	15/025313	01/04/2015	20/05/2015	< 0,0000246	0,00768 ± 0,00063
VA01	15/034063	04/05/2015	01/06/2015	< 0,0000262	0,00675 ± 0,00071
VA01	15/037157	01/06/2015	01/07/2015	< 0,0000283	0,00716 ± 0,00060
VA01	15/043856	01/07/2015	03/08/2015	< 0,0000505	0,00911 ± 0,00076
VA01	15/047564	03/08/2015	01/09/2015	< 0,0000585	0,00662 ± 0,00062
VA01	15/053592	01/09/2015	01/10/2015	< 0,0000528	0,00545 ± 0,00058
VA01	15/058538	01/10/2015	02/11/2015	< 0,0000340	0,00323 ± 0,00051
VA01	15/060993	02/11/2015	01/12/2015	< 0,0000404	0,00412 ± 0,00050
VA01	16/003492	01/12/2015	04/01/2016	< 0,0000141	0,00442 ± 0,00045

Tabella A 8 Risultati delle misure sui filtri giornalieri di particolato atmosferico prelevati presso il punto di campionamento di Vercelli (Bq/m³).

Punto	Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
VA01	15/000006	31/12/2014	07/01/2015	0,0000857 ± 0,0000151	0,00151 ± 0,00011
VA01	15/001990	07/01/2015	08/01/2015	0,0000879 ± 0,0000348	0,00191 ± 0,00019
VA01	15/002330	08/01/2015	09/01/2015	0,0000794 ± 0,0000353	0,00207 ± 0,00020
VA01	15/002382	09/01/2015	12/01/2015	0,0000706 ± 0,0000159	0,00195 ± 0,00016
VA01	15/002557	12/01/2015	13/01/2015	0,0000740 ± 0,0000305	0,000899 ± 0,000143
VA01	15/002732	13/01/2015	14/01/2015	0,000127 ± 0,000040	0,00158 ± 0,00018
VA01	15/002890	14/01/2015	15/01/2015	0,000107 ± 0,000037	0,00172 ± 0,00018
VA01	15/002944	15/01/2015	16/01/2015	0,000144 ± 0,000043	0,00246 ± 0,00023
VA01	15/002996	16/01/2015	19/01/2015	0,0000606 ± 0,0000147	0,00132 ± 0,00011
VA01	15/003847	19/01/2015	20/01/2015	0,000108 ± 0,000037	0,00157 ± 0,00017
VA01	15/004055	20/01/2015	21/01/2015	0,0000956 ± 0,0000363	0,00190 ± 0,00019
VA01	15/004205	21/01/2015	22/01/2015	< 0,0000749	0,000943 ± 0,000141
VA01	15/004810	22/01/2015	23/01/2015	0,0000617 ± 0,0000341	0,000748 ± 0,00014
VA01	15/005405	23/01/2015	26/01/2015	0,0000346 ± 0,0000121	$0,000970 \pm 0,000084$
VA01	15/005932	26/01/2015	27/01/2015	0,0000516 ± 0,0000307	0,000992 ± 0,000141
VA01	15/006172	27/01/2015	28/01/2015	< 0,0000691	0,00155 ± 0,00017
VA01	15/006270	28/01/2015	29/01/2015	< 0,0000586	0,00108 ± 0,00014
VA01	15/006329	29/01/2015	30/01/2015	0,0000889 ± 0,0000344	0,00151 ± 0,00017
VA01	15/006370	30/01/2015	02/02/2015	0,0000362 ± 0,0000116	0,000759 ± 0,000070
VA01	15/006808	02/02/2015	03/02/2015	0,0000470 ± 0,0000316	0,000772 ± 0,000134
VA01	15/006936	03/02/2015	04/02/2015	0,0000669 ± 0,0000326	0,00145 ± 0,00017
VA01	15/007077	04/02/2015	05/02/2015	0,0000466 ± 0,0000292	0,000805 ± 0,000132
VA01	15/007127	05/02/2015	06/02/2015	< 0,0000517	0,000402 ± 0,000123
VA01	15/007151	06/02/2015	09/02/2015	0,0000160 ± 0,0000098	0,000536 ± 0,000057
VA01	15/007607	09/02/2015	10/02/2015	0,0000692 ± 0,0000316	0,00125 ± 0,00015
VA01	15/007830	10/02/2015	11/02/2015	0,0000919 ± 0,0000336	0,00156 ± 0,00017
VA01	15/008450	11/02/2015	12/02/2015	0,000104 ± 0,000036	0,00171 ± 0,00018
VA01	15/008734	12/02/2015	13/02/2015	0,000154 ± 0,000040	0,00204 ± 0,00020
VA01	15/008791	13/02/2015	16/02/2015	0,0000378 ± 0,0000121	0,000916 ± 0,000081
VA01	15/009051	16/02/2015	17/02/2015	0,0000677 ± 0,0000307	0,00119 ± 0,00015
VA01	15/009175	17/02/2015	18/02/2015	0,0000913 ± 0,0000346	0,00160 ± 0,00017
VA01	15/009336	18/02/2015	19/02/2015	0,000103 ± 0,000034	0,00186 ± 0,00019
VA01	15/009448	19/02/2015	20/02/2015	0,0000828 ± 0,000033	0,00241 ± 0,00022
VA01	15/010060	20/02/2015	23/02/2015	0,0000401 ± 0,0000124	0,00102 ± 0,000088
VA01	15/010667	23/02/2015	24/02/2015	0,0000843 ± 0,0000323	0,0014 ± 0,00016
VA01	15/010902	24/02/2015	25/02/2015	0,0000614 ± 0,0000312	0,00131 ± 0,00015
VA01	15/011098	25/02/2015	26/02/2015	0,0000407 ± 0,0000283	0,000688 ± 0,000125
VA01	15/011192	26/02/2015	27/02/2015	< 0,0000595	0,000716 ± 0,000132
VA01	15/011244	27/02/2015	02/03/2015	0,0000590 ± 0,0000135	$0,00130 \pm 0,00011$
VA01	15/011525	02/03/2015	03/03/2015	< 0,0000657	0,00121 ± 0,00015
VA01	15/011773	03/03/2015	04/03/2015	0,0000849 ± 0,0000348	0,00106 ± 0,00014
VA01	15/011929	04/03/2015	05/03/2015	0,0000557 ± 0,0000278	0,000886 ± 0,00013
VA01	15/012799	05/03/2015	06/03/2015	< 0,0000622	0,000465 ± 0,000118
VA01	15/012922	06/03/2015	09/03/2015	0,0000402 ± 0,0000112	0,000681 ± 0,000068
VA01	15/013812	09/03/2015	10/03/2015	0,0000660 ± 0,0000304	0,00119 ± 0,00015

		Inizio	Fine		
Punto	Campione		campionamento	Alfa totale	Beta totale
VA01	15/014006	10/03/2015	11/03/2015	0,0000914 ± 0,0000336	0,00166 ± 0,00018
VA01	15/014199	11/03/2015	12/03/2015	0,0000811 ± 0,0000338	0,00202 ± 0,00021
VA01	15/014306	12/03/2015	13/03/2015	0,0000476 ± 0,0000333	$0,00139 \pm 0,00017$
VA01	15/014638	13/03/2015	16/03/2015	0,0000492 ± 0,0000141	0,000940 ± 0,000085
VA01	15/014789	16/03/2015	17/03/2015	< 0,0000549	0,000658 ± 0,000129
VA01	15/014975	17/03/2015	18/03/2015	0,0000487 ± 0,0000309	0,000592 ± 0,000123
VA01	15/015079	18/03/2015	19/03/2015	0,0000934 ± 0,0000322	0,00184 ± 0,00018
VA01	15/015803	19/03/2015	20/03/2015	0,0000927 ± 0,0000351	0,00222 ± 0,00021
VA01	15/015931	20/03/2015	23/03/2015	0,0000615 ± 0,0000143	0,00118 ± 0,00011
VA01	15/016054	23/03/2015	24/03/2015	0,000118 ± 0,000037	0,00193 ± 0,00020
VA01	15/016257	24/03/2015	25/03/2015	0,000100 ± 0,000034	0,00169 ± 0,00018
VA01	15/016390	25/03/2015	26/03/2015	0,0000737 ± 0,0000288	0,000571 ± 0,000124
VA01	15/016481	26/03/2015	27/03/2015	0,0000813 ± 0,0000291	0,000652 ± 0,000121
VA01	15/016507	27/03/2015	30/03/2015	0,0000397 ± 0,0000122	0,000872 ± 0,000080
VA01	15/016705	30/03/2015	31/03/2015	0,0000567 ± 0,0000302	0,000407 ± 0,000125
VA01	15/017083	31/03/2015	01/04/2015	0,0000492 ± 0,0000295	0,000492 ± 0,000120
VA01	15/017390	01/04/2015	02/04/2015	0,0000430 ± 0,0000256	0,000488 ± 0,000122
VA01	15/017525	02/04/2015	03/04/2015	0,0000838 ± 0,0000295	0,000827 ± 0,000129
VA01	15/017565	03/04/2015	07/04/2015	0,0000298 ± 0,0000087	0,000684 ± 0,000063
VA01	15/017833	07/04/2015	08/04/2015	0,0000573 ± 0,0000295	0,00103 ± 0,00015
VA01	15/018247	08/04/2015	09/04/2015	0,0000760 ± 0,000032	0,00142 ± 0,00016
VA01	15/018480	09/04/2015	10/04/2015	0,000102 ± 0,000035	0,00169 ± 0,00018
VA01	15/018513	10/04/2015	13/04/2015	0,0000734 ± 0,0000164	0,00152 ± 0,00012
VA01	15/018824	13/04/2015	14/04/2015	0,000231 ± 0,000073	0,00172 ± 0,00029
VA01	15/019104	14/04/2015	15/04/2015	0,000131 ± 0,000036	0,00202 ± 0,00020
VA01	15/019327	15/04/2015	16/04/2015	0,000124 ± 0,00007	0,00237 ± 0,00035
VA01	15/019542	16/04/2015	17/04/2015	0,0000711 ± 0,0000343	0,00206 ± 0,00021
VA01	15/019649	17/04/2015	20/04/2015	0,0000512 ± 0,0000134	0,000894 ± 0,000080
VA01	15/019975	20/04/2015	21/04/2015	0,0000892 ± 0,0000319	0,00113 ± 0,00015
VA01	15/020270	21/04/2015	22/04/2015	0,000169 ± 0,000044	0,00180 ± 0,00019
VA01	15/020488	22/04/2015	23/04/2015	0,000201 ± 0,000058	0,00217 ± 0,00025
VA01	15/020609	23/04/2015	24/04/2015	0,0000982 ± 0,0000330	0,00170 ± 0,00018
VA01	15/020940	24/04/2015	27/04/2015	0,0000698 ± 0,0000164	0,00128 ± 0,00011
VA01	15/022325	28/04/2015	28/04/2015	0,000065 ± 0,0000309	0,000714 ± 0,000129
VA01	15/022482	27/04/2015	28/04/2015	$0,0000589 \pm 0,0000324$	0,000569 ± 0,000138
VA01	15/022593	29/04/2015	30/04/2015	0,0000398 ± 0,0000272	0,000631 ± 0,000125
VA01	15/022697	30/04/2015	04/05/2015	$0,0000370 \pm 0,0000099$	0,000682 ± 0,000061
VA01	15/022916	04/05/2015	05/05/2015	0,000179 ± 0,000043	0,000963 ± 0,000143
VA01	15/023141	05/05/2015	06/05/2015	0,000137 ± 0,000039	0,00163 ± 0,00018
VA01	15/023322	06/05/2015	07/05/2015	0,000117 ± 0,000035	0,00175 ± 0,00018
VA01	15/023436	07/05/2015	08/05/2015	0,000179 ± 0,000107	0,00184 ± 0,00046
VA01	15/023457	08/05/2015	11/05/2015	$0,0000816 \pm 0,0000174$	0,00127 ± 0,00011
VA01	15/023713	11/05/2015	12/05/2015	0,0000945 ± 0,0000328	0,00127 ± 0,00017
VA01	15/024035	12/05/2015	13/05/2015	0,000160 ± 0,000099	0,00256 ± 0,00046
VA01	15/024053	13/05/2015	14/05/2015	0,000100 ± 0,000054	0,00206 ± 0,00046
VA01	15/024625	14/05/2015	15/05/2015	0,0000765 ± 0,0000328	0,00164 ± 0,00018
VA01	15/024689	15/05/2015	18/05/2015	$0,0000765 \pm 0,0000320$ $0,0000565 \pm 0,0000130$	$0,00100 \pm 0,00010$
VA01	15/025078	18/05/2015	19/05/2015	0,0000305 ± 0,0000130	0,00185 ± 0,00019
VA01	15/025280			$0,000103 \pm 0,000040$ $0,0000423 \pm 0,0000317$	$0,000185 \pm 0,00019$ $0,000905 \pm 0,000145$
VAUI	13/023200	19/05/2015	20/05/2015	0,0000423 ± 0,0000317	0,000303 ± 0,000145

		1!!	F:		
Punto	Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
VA01	15/025419	20/05/2015	21/05/2015	0,0000588 ± 0,0000306	0,000363 ± 0,000122
VA01	15/025518	21/05/2015	22/05/2015	< 0,0000586	0,000575 ± 0,000128
VA01	15/026195	22/05/2015	25/05/2015	0,0000200 ± 0,0000105	0,000485 ± 0,000058
VA01	15/026424	25/05/2015	26/05/2015	0,0000470 ± 0,0000316	0,000912 ± 0,000141
VA01	15/027311	26/05/2015	27/05/2015	< 0,0000594	$0,000388 \pm 0,000121$
VA01	15/027478	27/05/2015	28/05/2015	< 0,0000675	0,000779 ± 0,000129
VA01	15/027583	28/05/2015	29/05/2015	0,0000585 ± 0,0000294	$0,000808 \pm 0,000136$
VA01	15/028185	29/05/2015	01/06/2015	0,0000496 ± 0,0000132	0,00123 ± 0,00011
VA01	15/029217	01/06/2015	03/06/2015	0,0000959 ± 0,0000196	0,00131 ± 0,00012
VA01	15/029223	03/06/2015	04/06/2015	0,0000874 ± 0,0000343	0,00175 ± 0,00019
VA01	15/029336	04/06/2015	05/06/2015	0,0000944 ± 0,000035	0,00219 ± 0,00022
VA01	15/029370	05/06/2015	08/06/2015	0,0000868 ± 0,0000167	0,00150 ± 0,00012
VA01	15/029609	08/06/2015	09/06/2015	0,0000478 ± 0,0000318	0,000949 ± 0,000142
VA01	15/029854	09/06/2015	10/06/2015	0,0000911 ± 0,0000357	0,00131 ± 0,00016
VA01	15/030892	10/06/2015	11/06/2015	0,000129 ± 0,000040	0,00167 ± 0,00018
VA01	15/031050	11/06/2015	12/06/2015	0,0000926 ± 0,0000356	0,00183 ± 0,00019
VA01	15/031921	12/06/2015	15/06/2015	0,0000932 ± 0,0000194	0,00122 ± 0,000100
VA01	15/032266	15/06/2015	16/06/2015	0,0000616 ± 0,0000336	0,00104 ± 0,00015
VA01	15/032530	16/06/2015	17/06/2015	< 0,000634	0,000886 ± 0,000135
VA01	15/033051	17/06/2015	18/06/2015	0,0000521 ± 0,0000289	0,000765 ± 0,000135
VA01	15/033164	18/06/2015	19/06/2015	$0,0000403 \pm 0,0000306$	0,00111 ± 0,00015
VA01	15/033393	19/06/2015	22/06/2015	$0,0000403 \pm 0,0000140$	0,000948 ± 0,000085
VA01	15/033646	22/06/2015	23/06/2015	0,0000621 ± 0,0000316	0.00102 ± 0.00014
VA01	15/033862	23/06/2015	24/06/2015	< 0,0000588	0.000941 ± 0.000149
VA01	15/034062	24/06/2015	25/06/2015	< 0,0000498	0,000702 ± 0,00013
VA01	15/034104	25/06/2015	26/06/2015	< 0,0000568	0,000709 ± 0,00013
VA01	15/034167	26/06/2015	29/06/2015	0,0000462 ± 0,0000146	0,00131 ± 0,00011
VA01	15/034433	29/06/2015	30/06/2015	0,0000730 ± 0,0000336	0,00146 ± 0,00017
VA01	15/034732	30/06/2015	01/07/2015	< 0,0000783	0,00146 ± 0,00017
VA01	15/034732	01/07/2015	02/07/2015	$0,0000503$ $0,0000521 \pm 0,0000315$	0.00144 ± 0.00017 0.00169 ± 0.000184
VA01	15/034919	02/07/2015	03/07/2015	< 0,0000321 ± 0,0000313	0.00103 ± 0.000184 0.00173 ± 0.0002
VA01	15/035113	03/07/2015	06/07/2015	0,0000694 ± 0,0000172	0,00173 ± 0,0002 0,00212 ± 0,00017
VA01	15/035793	06/07/2015	07/07/2015	$0,0000694 \pm 0,0000172$ $0,0000682 \pm 0,0000373$	
VA01	15/036042	07/07/2015	08/07/2015	0,0000682 ± 0,0000373	
VA01	15/036235		09/07/2015		
		08/07/2015		< 0,0000777	0,00252 ± 0,00023
VA01	15/036488	09/07/2015	10/07/2015	< 0,0000582	0,00101 ± 0,00015
VA01	15/036527	10/07/2015	13/07/2015	0,0000594 ± 0,0000148	0,00142 ± 0,00012
VA01	15/037052	13/07/2015	14/07/2015	0,0000614 ± 0,0000367	0,00181 ± 0,00019
VA01	15/037365	14/07/2015	15/07/2015	0,000108 ± 0,000037	0,00237 ± 0,00022
VA01	15/037547	15/07/2015	16/07/2015	0,0000554 ± 0,0000362	0,00233 ± 0,00022
VA01	15/037701	16/07/2015	17/07/2015	0,000104 ± 0,000040	0,00255 ± 0,00024
VA01	15/037760	17/07/2015	20/07/2015	0,000112 ± 0,000022	0,00211 ± 0,00016
VA01	15/038002	20/07/2015	21/07/2015	0,000101 ± 0,000040	0,00202 ± 0,00021
VA01	15/038274	21/07/2015	22/07/2015	0,000146 ± 0,000041	0,00263 ± 0,00024
VA01	15/038444	22/07/2015	23/07/2015	0,0000826 ± 0,0000393	0,00209 ± 0,00021
VA01	15/038535	23/07/2015	24/07/2015	0,000133 ± 0,00004	0,00192 ± 0,00020
VA01	15/039144	24/07/2015	27/07/2015	0,0000450 ± 0,0000143	0,00127 ± 0,00011
VA01	15/039364	27/07/2015	28/07/2015	< 0,0000576	0,00100 ± 0,00015
VA01	15/039660	28/07/2015	29/07/2015	< 0,0000591	0,000844 ± 0,000147

		Inizio	Fine		
Punto	Campione		campionamento	Alfa totale	Beta totale
VA01	15/039841	29/07/2015	30/07/2015	< 0,0000578	0,000982 ± 0,000142
VA01	15/039996	30/07/2015	31/07/2015	< 0,0000574	0,000763 ± 0,000135
VA01	15/040029	31/07/2015	03/08/2015	0,0000518 ± 0,000014	$0,000887 \pm 0,000081$
VA01	15/040426	03/08/2015	04/08/2015	0,0000559 ± 0,0000354	0,00170 ± 0,00018
VA01	15/040708	04/08/2015	05/08/2015	< 0,0000780	0,00207 ± 0,00020
VA01	15/040866	05/08/2015	06/08/2015	0,000114 ± 0,000038	$0,00215 \pm 0,00021$
VA01	15/041318	06/08/2015	07/08/2015	0,000109 ± 0,000037	0,00246 ± 0,00024
VA01	15/042532	07/08/2015	10/08/2015	0,0000668 ± 0,0000159	0,00197 ± 0,00016
VA01	15/042553	10/08/2015	11/08/2015	0,0000496 ± 0,0000317	0,00120 ± 0,00016
VA01	15/042575	11/08/2015	12/08/2015	0,0000916 ± 0,0000351	0,00203 ± 0,00020
VA01	15/042679	12/08/2015	13/08/2015	0,0000845 ± 0,0000372	0,00255 ± 0,00023
VA01	15/042726	13/08/2015	14/08/2015	< 0,0000753	0,00251 ± 0,00023
VA01	15/042755	14/08/2015	17/08/2015	0,0000653 ± 0,0000151	0,000881 ± 0,00008
VA01	15/042962	17/08/2015	18/08/2015	0,0000578 ± 0,0000311	0,000786 ± 0,000133
VA01	15/043108	18/08/2015	19/08/2015	0,0000836 ± 0,0000326	0,000791 ± 0,000139
VA01	15/043220	19/08/2015	20/08/2015	0,0000704 ± 0,0000329	0,000854 ± 0,000139
VA01	15/043302	20/08/2015	21/08/2015	0,0000871 ± 0,0000339	0,00105 ± 0,00015
VA01	15/043393	21/08/2015	24/08/2015	0,0000607 ± 0,0000145	0,00122 ± 0,00010
VA01	15/043515	24/08/2015	25/08/2015	0,0000748 ± 0,0000319	0,00150 ± 0,00017
VA01	15/043771	25/08/2015	26/08/2015	0,000116 ± 0,000039	0,00135 ± 0,00017
VA01	15/043974	26/08/2015	27/08/2015	0,0000445 ± 0,000032	0,00140 ± 0,00016
VA01	15/044062	27/08/2015	28/08/2015	0,0000743 ± 0,0000342	0,00202 ± 0,00021
VA01	15/044087	28/08/2015	31/08/2015	0,000120 ± 0,000022	0,00239 ± 0,00019
VA01	15/044686	31/08/2015	01/09/2015	0,000164 ± 0,000042	0,00253 ± 0,00023
VA01	15/044893	01/09/2015	02/09/2015	0,000200 ± 0,000048	0,00212 ± 0,00021
VA01	15/045055	02/09/2015	03/09/2015	0,0000636 ± 0,0000349	0,00137 ± 0,00017
VA01	15/045152	03/09/2015	04/09/2015	< 0,0000506	0,000803 ± 0,000142
VA01	15/045175	04/09/2015	07/09/2015	0,0000476 ± 0,0000130	0,000826 ± 0,000077
VA01	15/045680	08/09/2015	08/09/2015	0,0000571 ± 0,0000300	0,00126 ± 0,00015
VA01	15/046247	08/09/2015	09/09/2015	0,0000522 ± 0,0000316	0,000992 ± 0,000147
VA01	15/046672	09/09/2015	10/09/2015	0,0000542 ± 0,0000298	0,000945 ± 0,000145
VA01	15/046844	10/09/2015	11/09/2015	0,0000469 ± 0,0000294	0,00129 ± 0,00015
VA01	15/046922	11/09/2015	14/09/2015	0,0000282 ± 0,0000112	0,00114 ± 0,000096
VA01	15/047101	14/09/2015	15/09/2015	< 0,0000511	0,000731 ± 0,000131
VA01	15/047435	15/09/2015	16/09/2015	0,0000449 ± 0,0000297	0,00100 ± 0,00014
VA01	15/047629	16/09/2015	17/09/2015	0,0000498 ± 0,0000294	0,000918 ± 0,000144
VA01	15/047807	17/09/2015	18/09/2015	0,0000562 ± 0,0000307	0,00127 ± 0,00016
VA01	15/048427	18/09/2015	21/09/2015	0,0000248 ± 0,000011	0,000647 ± 0,000067
VA01	15/048624	21/09/2015	22/09/2015	0,000043 ± 0,0000286	0,00101 ± 0,00015
VA01	15/048885	22/09/2015	23/09/2015	0,0000620 ± 0,000031	0,00128 ± 0,00016
VA01	15/049062	23/09/2015	24/09/2015	< 0,0000474	0,000282 ± 0,000116
VA01	15/049216	24/09/2015	25/09/2015	< 0,0000550	0,000362 ± 0,000124
VA01	15/049383	25/09/2015	28/09/2015	0,0000416 ± 0,0000125	0,00103 ± 0,00009
VA01	15/049579	28/09/2015	29/09/2015	< 0,0000572	0,000572 ± 0,000127
VA01	15/050139	29/09/2015	30/09/2015	0,0000549 ± 0,0000297	0,000603 ± 0,000125
VA01	15/050314	30/09/2015	01/10/2015	< 0,0000572	0,000652 ± 0,000129
VA01	15/050415	01/10/2015	02/10/2015	< 0,0000442	0,000883 ± 0,000134
VA01	15/050486	02/10/2015	05/10/2015	0,0000215 ± 0,0000105	0,000620 ± 0,000064
VA01	15/050986	05/10/2015	06/10/2015	< 0,0000565	0,00120 ± 0,00015

Dunto	Campione	Inizio	Fine	Alfa totale	Beta totale
Fullo	Campione	campionamento	campionamento	Alla totale	Deta totale
VA01	15/051170	06/10/2015	07/10/2015	0,0000609 ± 0,0000316	0,00106 ± 0,00015
VA01	15/051673	07/10/2015	08/10/2015	< 0,0000569	0,00110 ± 0,00015
VA01	15/051985	08/10/2015	09/10/2015	0,0000550 ± 0,0000294	0,000927 ± 0,000138
VA01	15/052659	09/10/2015	12/10/2015	0,0000583 ± 0,0000145	$0,00103 \pm 0,00009$
VA01	15/052878	12/10/2015	13/10/2015	0,0000780 ± 0,000037	0,00170 ± 0,00018
VA01	15/053150	13/10/2015	14/10/2015	0,0000589 ± 0,0000296	$0,000682 \pm 0,000127$
VA01	15/053385	14/10/2015	15/10/2015	0,0000639 ± 0,0000328	$0,000558 \pm 0,000127$
VA01	15/053646	15/10/2015	16/10/2015	< 0,0000537	0,000618 ± 0,000126
VA01	15/053694	16/10/2015	19/10/2015	0,0000294 ± 0,0000113	0,000802 ± 0,000075
VA01	15/053894	19/10/2015	20/10/2015	< 0,0000557	0,00156 ± 0,00017
VA01	15/054180	20/10/2015	21/10/2015	0,0000662 ± 0,0000315	0,00151 ± 0,00017
VA01	15/054364	21/10/2015	22/10/2015	< 0,0000709	0,00160 ± 0,00017
VA01	15/054592	22/10/2015	23/10/2015	0,0000801 ± 0,0000314	$0,00189 \pm 0,00019$
VA01	15/054625	23/10/2015	26/10/2015	0,0000559 ± 0,0000154	$0,00178 \pm 0,00014$
VA01	15/055431	26/10/2015	27/10/2015	0,0000504 ± 0,0000358	0,00230 ± 0,00022
VA01	15/055664	27/10/2015	28/10/2015	0,0000849 ± 0,0000378	0,00260 ± 0,00024
VA01	15/055927	28/10/2015	29/10/2015	0,0000456 ± 0,0000304	0,00161 ± 0,00017
VA01	15/056147	29/10/2015	30/10/2015	< 0,0000599	0,000878 ± 0,000142
VA01	15/056320	30/10/2015	02/11/2015	0,0000616 ± 0,0000157	0,00166 ± 0,00013
VA01	15/056522	02/11/2015	03/11/2015	0,0000526 ± 0,0000318	0,00205 ± 0,0002
VA01	15/056977	03/11/2015	04/11/2015	0,0000919 ± 0,0000390	0,00246 ± 0,00023
VA01	15/057174	04/11/2015	05/11/2015	< 0,0000562	0,00144 ± 0,00016
VA01	15/057293	05/11/2015	06/11/2015	< 0,0000601	0,00170 ± 0,00018
VA01	15/057366	06/11/2015	09/11/2015	0,0000515 ± 0,0000146	0,00180 ± 0,00014
VA01	15/057559	09/11/2015	10/11/2015	0,0000878 ± 0,0000387	0,00225 ± 0,00021
VA01	15/057804	10/11/2015	11/11/2015	0,000129 ± 0,000042	0,00229 ± 0,00022
VA01	15/057911	11/11/2015	12/11/2015	0,0000996 ± 0,0000360	0,00244 ± 0,00022
VA01	15/058021	12/11/2015	13/11/2015	0,0000890 ± 0,0000390	0,00276 ± 0,00025
VA01	15/058093	15/11/2015	16/11/2015	0,0000506 ± 0,0000144	0,00184 ± 0,00014
VA01	15/058287	16/11/2015	17/11/2015	< 0,0000794	0,00161 ± 0,00018
VA01	15/058521	17/11/2015	18/11/2015	0,000049 ± 0,0000344	0,00148 ± 0,00017
VA01	15/058680	18/11/2015	19/11/2015	0,0000676 ± 0,0000328	0,00155 ± 0,00017
VA01	15/058809	19/11/2015	20/11/2015	0,0000548 ± 0,0000364	0,00201 ± 0,00020
VA01	15/058838	20/11/2015	23/11/2015	0,0000392 ± 0,0000135	0,000898 ± 0,000080
VA01	15/058996	23/11/2015	24/11/2015	< 0,0000574	0,000683 ± 0,000130
VA01	15/059161	24/11/2015	25/11/2015	< 0,0000561	0,00112 ± 0,00015
VA01	15/059274	25/11/2015	26/11/2015	< 0,0000510	0,00152 ± 0,00017
VA01	15/059442	26/11/2015	27/11/2015	< 0,0000590	0,000739 ± 0,000134
VA01	15/059504	27/11/2015	30/11/2015	0,0000525 ± 0,0000145	0,00133 ± 0,00011
VA01	15/059658	30/11/2015	01/12/2015	< 0,000783	0,00192 ± 0,00020
VA01	15/059833	01/12/2015	02/12/2015	0,000136 ± 0,000039	0,00237 ± 0,00022
VA01	15/060079	02/12/2015	03/12/2015	0,0000901 ± 0,0000364	0,00282 ± 0,00025
VA01	15/060499	03/12/2015	04/12/2015	0,0000796 ± 0,0000334	0,00193 ± 0,00019
VA01	15/060556	04/12/2015	09/12/2015	0,000140 ± 0,000023	0,00233 ± 0,00018
VA01	15/060861	09/12/2015	10/12/2015	0,000128 ± 0,000041	0,00285 ± 0,00025
VA01	15/060928	10/12/2015	11/12/2015	0,000102 ± 0,000037	0,00222 ± 0,00021
VA01	15/060973	11/12/2015	14/12/2015	0,000129 ± 0,000024	$0,00309 \pm 0,00023$
VA01	15/061188	14/12/2015	15/12/2015	0,000123 ± 0,000024	0,00538 ± 0,00043
VA01	15/061372	15/12/2015	16/12/2015	0,000159 ± 0,000041	0,00452 ± 0,00037

Punto	Campione	Inizio campionamento	izio Fine Alfa totale Beta totale		Beta totale
VA01	15/061524	16/12/2015	17/12/2015	0,000152 ± 0,000041	0,00446 ± 0,00038
VA01	15/061634	17/12/2015	18/12/2015	0,000101 ± 0,000039	0,00406 ± 0,00035
VA01	15/061680	18/12/2015	21/12/2015	0,000131 ± 0,000024	0,00327 ± 0,00025
VA01	15/061753	21/12/2015	22/12/2015	0,000220 ± 0,000050	0,00482 ± 0,00039
VA01	15/061827	22/12/2015	23/12/2015	0,000175 ± 0,000046	0,00424 ± 0,00035
VA01	15/061861	23/12/2015	24/12/2015	$0,000150 \pm 0,000042$	0,00428 ± 0,00035
VA01	15/061868	24/12/2015	28/12/2015	0,000112 ± 0,000020	0,00280 ± 0,00021
VA01	15/061901	28/12/2015	29/12/2015	0,0000646 ± 0,0000369	0,00224 ± 0,00022
VA01	15/062007	29/12/2015	30/12/2015	0,000128 ± 0,000040	0,00378 ± 0,00032
VA01	15/062032	30/12/2015	31/12/2015	0,000134 ± 0,000039	0,00265 ± 0,00024

Tabella A 9 Risultati delle misure sui campioni di Fallout (Bq/m²).

Punto	Campione	Inizio campionamento	Fine campionamento	Cs-137	Be-7
VA01	15/006436	07/01/2015	02/02/2015	< 0,0822	40,7 ± 3,5
VA01	15/011606	02/02/2015	03/03/2015	< 0,210	109 ± 7
VA01	15/017084	03/03/2015	01/04/2015	< 0,280	144 ± 10
VA01	15/022855	01/04/2015	04/05/2015	< 0,272	94,8 ± 5,7
VA01	15/029221	14/05/2015	03/06/2015	< 0,056	83,3 ± 5,0
VA01	15/034733	03/06/2015	01/07/2015	< 0,151	66,6 ± 4,2
VA01	15/040104	01/07/2015	03/08/2015	< 0,225	76,1 ± 5,0
VA01	15/044953	03/08/2015	02/09/2015	< 0,0916	250 ± 13
VA01	15/050345	02/09/2015	01/10/2015	< 0,0643	71,2 ± 4,0
VA01	15/056366	01/10/2015	02/11/2015	< 0,220	116 ± 7
VA01	15/059793	02/11/2015	01/12/2015	< 0,224	20,0 ± 2,2
VA01	16/001161	01/12/2015	04/01/2016	< 0,264	52,4 ± 3,9

Tabella A 10 Risultati delle misure sui campioni di erba (Bq/kg).

Punto	Campione	Data campionamento	Cs-137	Co-60
TS09	15/017151	27/03/2015	< 2,47	< 6,61
TS09	15/034647	30/06/2015	< 3,09	< 1,77
TS09	15/050083	29/09/2015	< 1,05	< 2,53
TS09	15/055885	28/10/2015	< 3,69	< 3,37

Tabella A 11 Risultati delle misure sui campioni di acqua superficiale del Po (Bq/I).

Punto	Campione	Data campionamento	Alfa totale	Beta totale	Am-241	Cs-137	Co-60	H-3
TF01	15/017164	27/03/2015	< 0,124	< 0,195	< 0,0155	< 0,00755	< 0,00148	< 1,99
TF01	15/054138	20/10/2015	< 0,105	< 0,172	< 0,0120	< 0,00741	< 0,00464	< 1,78
TF06	15/020622	24/04/2015	< 0,103	< 0,155	< 0,0205	< 0,00160	< 0,00531	< 1,68
TF06	15/054136	20/10/2015	< 0,104	0,187 ± 0,112	< 0,0240	< 0,00125	< 0,00391	< 1,80

Tabella A 12 Risultati delle misure sui campioni di sedimenti fluviali del Po (Bq/kg).

Punto	Campione	Data campionamento	Am-241	Cs-137	Co-60
TF01	15/017163	27/03/2015	< 2,28	2,46 ± 0,48	< 0,925
TF01	15/054137	20/10/2015	< 2,33	$3,78 \pm 0,60$	< 1,05
TF02	15/054130	20/10/2015	< 2,90	$1,80 \pm 0,34$	< 0,608
TF06	15/020621	24/04/2015	< 2,22	$3,01 \pm 0,45$	< 0,501
TF06	15/054134	20/10/2015	< 2,31	$2,29 \pm 0,59$	< 1,07

Tabella A 13 Risultati della misure sui campioni compositi mensili di particolato atmosferico prelevati presso il punto di campionamento all'interno della Centrale "E. Fermi" (Bq/m³).

Punto	Campione	Inizio campionamento	Fine campionamento	Cs-137	Be-7
TA01	16/003274	27/11/2015	01/01/2016	< 0,0000372	0,00413 ± 0,00061

Tabella A 14 Risultati delle misure sui filtri giornalieri di particolato atmosferico prelevati presso il punto di campionamento all'interno della Centrale "E. Fermi" (Bq/m³).

Punto	Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
TA01	15/061033	27/11/2015	28/11/2015	< 0,0000757	0,00103 ± 0,00018
TA01	15/061034	28/11/2015	29/11/2015	0,0000721 ± 0,0000436	0,00138 ± 0,00019
TA01	15/061035	29/11/2015	30/11/2015	0,0000893 ± 0,0000454	0,00243 ± 0,00026
TA01	15/061036	30/11/2015	01/12/2015	< 0,0000867	0,00133 ± 0,0002
TA01	15/061038	01/12/2015	02/12/2015	< 0,000125	0,00245 ± 0,00029
TA01	15/061040	02/12/2015	03/12/2015	< 0,000115	0,00156 ± 0,00023
TA01	15/061043	03/12/2015	04/12/2015	0,0000680 ± 0,0000419	0,00162 ± 0,00020
TA01	15/061044	04/12/2015	05/12/2015	< 0,0000897	0,00292 ± 0,00029
TA01	15/061047	05/12/2015	06/12/2015	< 0,000107	0,00290 ± 0,00028
TA01	15/061049	06/12/2015	07/12/2015	0,000286 ± 0,000061	0,00427 ± 0,00039
TA01	15/061051	07/12/2015	08/12/2015	0,000327 ± 0,000060	0,00554 ± 0,00045
TA01	15/061052	08/12/2015	09/12/2015	0,000157 ± 0,000050	0,00296 ± 0,00029
TA01	15/061054	09/12/2015	10/12/2015	< 0,0000859	0,00207 ± 0,00023
TA01	15/061056	10/12/2015	11/12/2015	0,0000911 ± 0,0000637	0,00229 ± 0,00028
TA01	15/061796	11/12/2015	12/12/2015	0,000144 ± 0,000050	$0,00359 \pm 0,00034$
TA01	15/061797	12/12/2015	13/12/2015	0,000165 ± 0,000049	$0,00430 \pm 0,00037$
TA01	15/061798	13/12/2015	14/12/2015	0,000183 ± 0,000051	$0,00520 \pm 0,00046$
TA01	15/061799	14/12/2015	15/12/2015	0,000163 ± 0,000056	0,00579 ± 0,00048
TA01	15/061800	15/12/2015	16/12/2015	0,0000913 ± 0,0000471	$0,00383 \pm 0,00034$
TA01	15/061801	16/12/2015	17/12/2015	< 0,000107	0,00406 ± 0,00038
TA01	15/061802	17/12/2015	18/12/2015	0,000181 ± 0,000059	$0,00493 \pm 0,00045$
TA01	15/062000	18/12/2015	19/12/2015	0,000161 ± 0,000051	0,00374 ± 0,00035
TA01	15/062001	19/12/2015	20/12/2015	0,000127 ± 0,000047	0,00434 ± 0,00037
TA01	15/062002	20/12/2015	21/12/2015	0,000196 ± 0,000052	$0,00559 \pm 0,00049$
TA01	15/062003	21/12/2015	22/12/2015	0,0000887 ± 0,0000527	0,00511 ± 0,00043
TA01	16/002009	27/12/2015	28/12/2015	< 0,0000839	0,00261 ± 0,00026
TA01	16/002010	28/12/2015	29/12/2015	< 0,0000797	0,00258 ± 0,00026
TA01	16/002011	29/12/2015	30/12/2015	0,000195 ± 0,000049	0,00513 ± 0,00045

Punto	Campione	Inizio campionamento	Fine campionamento	Alfa totale		Beta totale
TA01	16/002012		31/12/2015		000047	0,00371 ± 0,00033
TA01	16/002772	31/12/2015	01/01/2016	0,0000548 ± 0,0	000039	0,00233 ± 0,00025

ALLEGATO 2 - Metodi

Per l'esecuzione delle analisi sono stati utilizzati i seguenti metodi contenuti nel "Catalogo prove" di Arpa Piemonte:

- U.RP.M827 "Spettrometria gamma ad alta risoluzione" metodo interno accreditato ISO 17025 (Certificato ACCREDIA n. 0203 Sede H Vercelli – Elenco prove revisione 15 del 18/12/2014 e 16 del 24/09/2015);
- U.RP.M994 "Determinazione del contenuto di attività di H-3 in acqua mediante scintillazione liquida" – ISO 9698: 2010 Water quality - Determination of tritium activity concentration - Liquid scintillation counting method – metodo normalizzato accreditato ISO 17025 (Certificato ACCREDIA n. 0203 Sede G Alessandria – Elenco prove revisione 11 del 18/12/2014 e 12 del 24/09/2015);
- U.RP.MA006 "Determinazione dell'attività alfa totale e beta totale in acqua Metodo della sorgente sottile" ISO 10704: 2009 Water quality Measurement of gross alpha and gross beta activity in non-saline water Thin source deposit method metodo normalizzato accreditato ISO 17025 (Certificato ACCREDIA n. 0203 Sede H Vercelli Elenco prove revisione 15 del 18/12/2014 e revisione 16 del 24/09/2015);
- U.RP.MA008 "Determinazione di Stronzio 89 e Stronzio 90 in acqua" ISO 13160: 2012
 Water quality Strontium 90 and strontium 89 Test methods using liquid scintillation counting or proportional counting metodo normalizzato accreditato ISO 17025 (Certificato ACCREDIA n. 0203 Sede H Vercelli Elenco prove revisione 15 del 18/12/2014 e revisione 16 del 24/09/2015);
- U.RP.T085: "Campionamento di matrici ambientali ed alimentari da sottoporre a misure radiometriche" metodo interno.

ALLEGATO 3 – Glossario

Atomo	È il costituente fondamentale della materia ed è composto dal nucleo e dagli elettroni orbitali.		
Attività	Numero di trasformazioni nucleari spontanee di un radionuclide che si producono nell'unità di tempo; si esprime in Becquerel.		
Becquerel (Bq)	Unità di misura dell'attività; 1 Bq = 1 disintegrazione al secondo.		
Combustibile nucleare	Materiale fissile utilizzato per produrre energia in una centrale nucleare.		
Combustibile nucleare irraggiato	Combustibile nucleare dopo l'utilizzo in un reattore nucleare.		
Contaminazione radioattiva	Contaminazione di una matrice, di una superficie, di un ambiente vita o di lavoro o di un individuo, prodotta da sostanze radioattive.		
Decadimento	Trasformazione spontanea di un nuclide instabile in un altro nuclide.		
Decommissioning	Insieme delle operazioni pianificate, tecniche e amministrative da effettuare su di un impianto nucleare al termine del suo esercizio al fine della sicurezza e protezione della popolazione e dell'ambiente, in funzione della destinazione finale dell'impianto e del sito.		
Dose assorbita	Energia assorbita per unità di massa di materiale irraggiato; si esprime in Gy.		
Dose efficace	Somma delle dosi equivalenti nei diversi organi e tessuti del corpo umano moltiplicate per gli appropriati fattori di ponderazione (w_T) ; si esprime in Sv.		
Dose efficace impegnata	Somma delle dosi equivalenti impegnate nei diversi organi e tessuti risultanti dall'introduzione di uno o più radionuclidi, ciascuna moltiplicata per il fattore di ponderazione del tessuto w_T ; si esprime in Sv .		
Dose equivalente	Prodotto della dose assorbita media in un tessuto o organo per il fattore di ponderazione delle radiazioni; si esprime in Sv.		
Dose equivalente impegnata	Dose equivalente ricevuta da un organo o da un tessuto, in un determinato periodo di tempo, in seguito all'introduzione di uno o più radionuclidi; si esprime in Sv.		
Fondo naturale di radiazioni	Insieme delle radiazioni ionizzanti provenienti da sorgenti naturali terrestri e cosmiche, sempre che l'esposizione che ne risulta non sia accresciuta in modo significativo da attività umane.		
Formula di scarico	Insieme delle prescrizioni per l'immissione controllata di radionuclidi nell'ambiente; è diversificata per effluenti aeriformi e liquidi.		

Gray (Gy)	Unità di misura della dose assorbita; 1 Gy = 1 J·kg ⁻¹ .		
Gruppi di riferimento della popolazione (gruppi critici)	Gruppi che comprendono persone la cui esposizione è ragionevolmente omogenea e rappresentativa di quella degli individui della popolazione maggiormente esposti, in relazione ad una determinata fonte di esposizione.		
Limite di Rivelabilità	Rappresenta il limite strumentale di rivelazione, cioè la minima quantità di radioattività che il sistema di misura è in grado di rivelare.		
Notazione scientifica	$1E+01 = 1x10^{+1} = 10$; $1E+00 = 1x10^{0} = 1$; $1E-02 = 1x10^{-2} = 0.01$		
Ricettività ambientale	Attività degli effluenti, sia liquidi sia aeriformi, il cui scarico provoca nel gruppo di riferimento della popolazione un prestabilito livello di dose, tale da rispettare il limite di dose pertinente.		
Sievert (Sv)	Unità di misura della dose equivalente e della dose efficace; se il fattore di ponderazione della radiazione è uguale a uno, 1 Sv = 1 $J \cdot kg^{-1}$. Sono suoi sottomultipli il millisievert (1 mSv = 1E-03 Sv) e il microsievert (1 μ Sv = 1E-06 Sv).		
Via critica	Via di esposizione relativa al gruppo di riferimento della popolazione.		

ALLEGATO 4 - Bibliografia

- RT/2005/UDA ENEA Glossario di radioprotezione Radioprotezione della popolazione e dell'ambiente.
- UNSCEAR Report 2000 vol. I.
- UNSCEAR Report 2008 vol. I.
- World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011.