

CENTRO REGIONALE PER LE RADIAZIONI IONIZZANTI E NON IONIZZANTI Struttura Semplice 21.02 – Monitoraggio e controllo dei siti nucleari

VALUTAZIONE DELL'IMPATTO RADIOLOGICO RELATIVO ALLE OPERAZIONI DI TRASPORTO DI URANIO NATURALE, IMPOVERITO ED ARRICHITO DAL SITO NUCLEARE DI BOSCO MARENGO (AL).

Relazione tecnica n. 20/SS 21.02/2006

Redazione	Funzione: Componente SS21.02 Nome: Luca Albertone	Data: 14/12/2006	Firma:
Redazione	Funzione: Responsabile SS21.02 Nome: Laura Porzio	Data: 14/12/2006	Firma:
Verifica	Funzione: Responsabile SS21.02 Nome: Laura Porzio	Data: 14/12/2006	Firma:
Approvazione	Funzione: Responsabile SC21 Nome: Giovanni d'Amore	Data: 15/12/2006	Firma:

INDICE

1.	PRE	EMESSA	3
2.	IL R	RUOLO DI ARPA	3
3.	STF	RUMENTAZIONE DI MISURA UTILIZZATA	4
4.	ME	TODOLOGIA DI MISURA	4
5.	RIS	ULTATI ANALITICI	5
5	.1	Misure eseguite in qualità di Ente Terzo	5
5	.2	Monitoraggio radiologico ambientale	6
6.	VAL	LUTAZIONI DI RADIOPROTEZIONE	8

Agenzia Regionale
per la Protezione Ambientale

1. PREMESSA

Questa relazione tecnica è stata redatta al termine delle operazioni relative al trasporto di

Uranio naturale, impoverito ed arricchito dal sito Bosco Marengo (AL).

Le operazioni si sono svolte nel periodo novembre 2005-novembre 2006.

2. IL RUOLO DI ARPA

Le operazioni di trasferimento del combustibile nucleare irraggiato hanno visto Arpa

Piemonte impegnata su due fronti:

Controlli radiometrici in qualità di Ente Terzo

I controlli radiometrici dei livelli di contaminazione e di irraggiamento sono effettuati, in

ottemperanza della vigente normativa, da parte dell'Esercente e del Vettore.

Inoltre Arpa Piemonte è stata individuata come Ente terzo, organismo super partes, che

ha il compito di certificare il rispetto dei limiti fissati dalla IAEA per il trasporto di materie

radioattive. In completa autonomia decisionale sulla tipologia e sui modi sono stati eseguiti

controlli:

· sugli imballaggi (contaminazione trasferibile alfa e beta-gamma, rateo di dose

gamma);

sui containers pieni in assetto di trasporto stradale (contaminazione trasferibile alfa e

beta-gamma, rateo di dose gamma).

Monitoraggio radiologico ambientale

Al fine di valutare correttamente l'eventuale impatto radiologico prodotto dalle operazioni di

trasferimento dell'uranio sull'ambiente e sulla popolazione è stato messo a punto un piano

di monitoraggio straordinario riassunto nella tabella 2.

All'inizio delle operazioni di preparazione del materiale e di confezionamento dei

contenitori di trasporto (imballaggi) sono stati posizionati, all'interno dell'impianto, una

ARPA Ente di diritto pubblico - Centro Regionale per le Radiazioni Ionizzanti e Non Ionizzanti

stazione fissa di campionamento del particolato atmosferico e due bidoni di raccolta del fall out (deposizione al suolo umida e secca).

Tabella 2 - Programma di monitoraggio.

Matrice	Punti di prelievo	Frequenza di prelievo	Indagine eseguita
Particolato atmosferico	1	giornaliera	spettrometria gamma attività alfa totale e beta totale ritardata
Fall out	1	termine operazioni	spettrometria gamma spettrometria alfa

3. STRUMENTAZIONE DI MISURA UTILIZZATA

Per l'esecuzione delle misure radiometriche è stata utilizzata la seguente strumentazione:

- rateometro Berthold LB 123 con sonda a scintillazione plastica LB 1236;
- catene spettrometriche gamma con rivelatore al germanio iperpuro di tipo p o n e software di elaborazione "Gamma Vision versione 6.0" della EG&G Ortec;
- contatore proporzionale a flusso di gas Berthold mod. LB 770;
- catena spettrometrica alfa con rivelatore al silicio a barriera superficiale e software di elaborazione "Alpha Vision - versione 5.31" della EG&G Ortec;
- contatore a scintillazione Wallach mod. 1414.

4. METODOLOGIA DI MISURA

Per l'esecuzione delle analisi sono stati utilizzati i seguenti metodi contenuti nel "Catalogo prove" di Arpa Piemonte:

- U.RP.M796 "Valutazione della contaminazione superficiale alfa e beta ISO 7503-1:
 1988 Evaluation of surface contamination-Part 1: beta emitters (maximum beta energy greater than 0,15 Mev) and alpha emitters";
- U.T2.M038 "Ricerca di radionuclidi mediante spettrometria gamma ad alta risoluzione"
 metodo interno accreditato Sinal (ad eccezione delle matrici particolato atmosferico ed erba);

- U.RP.M808: "Determinazione del contenuto di attività alfa totale e beta nel particolato atmosferico – APAT CTN-AGF AB 01" – metodo esterno non normalizzato non accreditato Sinal:
- U.RP.M742 "Determinazione dell'attività alfa totale da attinidi nell'acqua Eichrom Technologies, Inc. ACW11-03 Gross Alpha Radioactivity in Water" – metodo esterno non normalizzato non accreditato Sinal;
- U.RP.M751 "Determinazione di U-234, U-235 e U-238 in acqua Eichrom Technologies, Inc. ACW02 rev. 1.3 Uranium in Water" – metodo esterno non normalizzato non accreditato Sinal;

5. RISULTATI ANALITICI

5.1 Controlli radiometrici in qualità di Ente Terzo

La normativa internazionale fissa i limiti per la contaminazione trasferibile e per il rateo di dose, sia per l'imballaggio pieno che per il veicolo di trasporto, così come riassunto in tabella 3.

Tabella 3 - Requisiti per il trasporto

Grandezza	Limite sulla superficie dell'imballaggio	Limite a 1 m dalla superficie dell'imballaggio	Limite a 2 m dalla superficie verticale del veicolo di trasporto	
Contaminazione trasferibile alfa	0,4 Bq/cm ²	-	-	
Contaminazione trasferibile beta	4 Bq/cm ²	-	-	
Rateo di dose	2 mSv/h	0,1 mSv/h	0,1 mSv/h	

Nelle tabelle 4 e 5 sono riportati i valori massimi di contaminazione trasferibile e di rateo di dose gamma H*(10) riscontrati nel corso delle operazioni di trasporto.

Tabella 4 – Valori massimi di contaminazione trasferibile alfa e beta e di rateo di dose ambientale H*(10) riscontrati sugli imballaggi.

Trasporto	Contaminazione trasferibile alfa (Bq/cm²)	Contaminazione trasferibile beta (Bq/cm²)	Rateo di dose ambientale H*(10) a 1 metro (mSv/h)	
1°trasporto	0,004	0,002	0,010	
2°trasporto	0,003	0,002	0,0016	
3°trasporto	0,005	0,002	0,001	
Valore limite	0,4 Bq/cm²	4 Bq/cm²	0,1 mSv/h	

Tabella 5 – Valori massimi di rateo di dose ambientale H*(10) riscontrati intorno ai veicoli di trasporto.

Trasporto	Rateo di dose ambientale H*(10) a 2m (mSv/h)
1° trasporto	0,0016
2°trasporto	0,001
3°trasporto	0,001
Valore limite	0,1 mSv/h

Le misure eseguite hanno confermato l'ampio rispetto dei limiti riportati in tabella 3.

5.2 Monitoraggio radiologico ambientale

I risultati delle misure relative al monitoraggio radiologico ambientale sono riportati nelle tabelle 6 e 7.

Nel particolato atmosferico prelevato in continuo nei pressi dell'impianto i valori dell'attività alfa e beta totale sono perfettamente comparabili con quelli riscontrati in media nella regione e sono imputabili alla presenza di radionuclidi di origine naturale.

Tutti i valori si sono sempre mantenuti nettamente al di sotto dei *valori di screening:* un solo superamento è stato rilevato nel periodo 20-27/12/2005 peraltro in corrispondenza di una elevata concentrazione media di Be-7 (per cui non è definibile un *valore soglia* essendo un radionuclide naturale).

Per quanto riguarda il fall out le concentrazioni misurate degli isotopi dell'Uranio non evidenziano alterazioni dei rapporti isotopici: sono attribuibili all'uranio naturale e non direttamente riconducibili alle attività dell'impianto.

Tabella 6 – Risultati delle misure effettuate sul particolato atmosferico.

Numero campione	Data inizio	Data inizio	α totale Bg/m³	β totale Bg/m ³	Cs-137 Bq/m³	Be-7 Bq/m³
05/01014	14/11/2005	22/11/2005	2,3E-04	3,6E-03	<3,0E-05	2,9E-03 ± 8,0E-04
05/01055	22/11/2005	29/11/2005	1,6E-04	2,9E-03	<8,5E-05	<9,9E-04
05/01078	29/11/2005	05/12/2005	1,5E-04	2,8E-03	<9,4E-05	<1,2E-03
05/01102	06/12/2005	13/12/2005	<7,7E-05	2,2E-03	<7,1E-05	<1,2E-03
05/01134	13/12/2005	20/12/2005	1,4E-04	2,2E-03	<5,5E-05	3,1E-03 ± 8,4E-04
05/01157	20/12/2005	27/12/2005	4,2E-04	6,2E-03	<7,7E-05	4,9E-03 ± 8,1E-04
06/00013	27/12/2005	03/01/2006	2,3E-04	4,2E-03	<8,4E-05	2,1E-03 ± 8,0E-04
06/00036	03/01/2006	10/01/2006	2,0E-04	3,8E-03	<1,1E-04	2,6E-03 ± 1,2E-03
06/00139	10/01/2006	17/01/2006	2,8E-04	4,1E-03	<6,4E-05	4,2E-03 ± 8,8E-04
06/00163	17/01/2006	24/01/2006	2,3E-04	4,9E-03	<7,6E-05	4,2E-03 ± 9,7E-04
06/00186	24/01/2006	31/01/2006	1,8E-04	3,0E-03	<7,4E-05	3,8E-03 ± 9,9E-04
06/00222	31/01/2006	07/02/2006	<1,2E-04	2,3E-03	<5,3E-05	3,6E-03 ± 1,2E-03
06/00245	07/02/2006	14/02/2006	<1,1E-04	2,5E-03	<7,3E-05	6,0E-03 ± 1,2E-03
06/00268	14/02/2006	21/02/2006	2,1E-04	2,8E-03	<9,7E-05	<1,4E-03
06/00300	21/02/2006	28/02/2006	7,3E-05	1,0E-03	<7,9E-05	<9,3E-04
06/00319	28/02/2006	07/03/2006	1,2E-04	1,4E-03	<9,3E-05	3,3E-03 ± 8,9E-04
06/00364	07/03/2006	14/03/2006	<8,7E-05	1,0E-03	<3,9E-05	4,8E-03 ± 8,6E-04
06/00403	14/03/2006	21/03/2006	1,3E-04	2,1E-03	<1,1E-04	3,7E-03 ± 9,2E-04
06/00427	21/03/2006	28/03/2006	1,5E-04	2,1E-03	<8,4E-05	2,2E-03 ± 5,9E-04
06/00452	28/03/2006	04/04/2006	<1,0E-04	7,9E-04	<4,1E-05	3,5E-03 ± 1,2E-03
06/00483	04/04/2006	11/04/2006	<3,4E-04	1,7E-03	<1,1E-04	3,4E-03 ± 1.1E-03
06/00499	11/04/2006	18/04/2006	<1,2E-04	8,7E-04	<1,3E-04	5,3E-03 ± 1,8E-03
06/00515	18/04/2006	25/04/2006	<1,2E-04	1,4E-03	<4,2E-05	4,4E-03 ± 1,4E-03
06/00601	25/04/2006	02/05/2006	1,2E-04	1,4E-03	<8,2E-05	4,2E-03 ± 1,0E-03
06/00626	02/05/2006	09/05/2006	8,7E-05	2,1E-03	<9,7E-05	9,1E-03 ± 1,1E-03
06/00650	09/05/2006	16/05/2006	<8,2E-05	1,3E-03	<1,0E-04	8,2E-03 ± 1,2E-03
06/00676	16/05/2006	23/05/2006	<8,0E-05	1,8E-03	<6,6E-05	9,9E-03 ± 3,9E-03
06/00724	23/05/2006	30/05/2006	<6,1E-05	1,5E-03	<1,3E-04	8,1E-03 ± 1,2E-03
06/00745	30/05/2006	06/06/2006	<8,0E-05	1,3E-03	<9,3E-05	6,1E-03 ± 1,2E-03
06/00765	06/06/2006	13/06/2006	8,8E-05	1,5E-03	<8,6E-05	5,1E-03 ± 1,2E-03
06/00790	13/06/2006	20/06/2006	1,0E-04	1,3E-03	<2,7E-04	<4,7E-03
06/00814	20/06/2006	27/06/2006	3,1E-04	2,6E-03	<6,8E-05	8,7E-03 ± 1,4E-03
Valor	e di screening (Bq/m³)	5,0E-04	5,0E-03	3,0E-01	

I valori delle concentrazioni di Cs-137 e di Be-7 si riferiscono al campione composito settimanale mentre i valori delle concentrazioni di attività alfa totale e beta totale sono i massimi misurati nel corso della settimana.

Tabella 7 - Risultati delle misure effettuate sul fall-out.

Numero campione	Periodo	Cs-134 Bq/m²/giorno	Cs-137 Bq/m²/giorno	U-234 Bq/m²/giorno	U-235 Bq/m²/giorno	U-238 Bq/m²/giorno
00815/06	14/112005 27/06/2006	< 1,1E-03	< 1,6E-03	1,2E-03 ± 1,6E-04	6,4E-05 ± 1,8E-05	1,15E-03 ± 1,52E-04

6. VALUTAZIONI DI RADIOPROTEZIONE

I risultati delle misure effettuate consentono di formulare le seguenti valutazioni:

- i limiti fissati dalla IAEA per il trasporto di materie radioattive sono sempre stati rispettati;
- non si sono verificati episodi contaminazione ambientale.

Pertanto si può concludere che le operazioni di trasporto di Uranio naturale, impoverito ed arricchito dal sito Bosco Marengo (AL) non hanno esposto l'ambiente e la popolazione ad un significativo rischio radiologico.