

CENTRO REGIONALE PER LE RADIAZIONI IONIZZANTI E NON IONIZZANTI Struttura Semplice 21.02 – Monitoraggio e controllo dei siti nucleari

MONITORAGGIO RADIOLOGICO AMBIENTALE SITO NUCLEARE DI BOSCO MARENGO (AL)

Aggiornamento 2005

Relazione tecnica n. 11/SS21.02/2006

Podoziono	Funzione: Componente SS21.02 Nome: Luca Albertone	Data: 01/06/2006	Firma:
Redazione	Funzione: Responsabile SS21.02 Nome: Laura Porzio	Data: 01/06/2006	Firma:
Verifica	Funzione: Responsabile SS21.02 Nome: Laura Porzio	Data: 06/06/2006	Firma:
Approvazione	Funzione: Responsabile SC21 Nome: Giovanni d'Amore	Data: 06/06/2006	Firma:

INDICE

1.	PREMESSA	3
2.	CARATTERIZZAZIONE DEL SITO	3
3.	RIFERIMENTI LEGISLATIVI	3
4.	STRATEGIE DI CONTROLLO	5
5.	TOSSICITA' CHIMICA DELL'URANIO	9
6.	LA RETE DI MONITORAGGIO	10
7.	METODOLOGIA DI MISURA	14
8.	STRUMENTAZIONE UTILIZZATA	15
9.	MONITORAGGIO AMBIENTALE	16
	Acqua potabile di rete	16
	Acqua di falda superficiale	17
	Suolo imperturbato – strato superficiale	19
	Suoli coltivati e relative coltivazioni	19
	Acqua superficiale	20
	Sedimenti	21
	Particolato atmosferico	22
10.	STATO DI ATTUAZIONE DELLA RETE DI MONITORAGGIO	25
11.	VALUTAZIONI DOSIMETRICHE	26
12.	VALUTAZIONI CONCLUSIVE	28

1. PREMESSA

Questa relazione viene redatta, conformemente a quanto previsto dalla procedura tecnica

U.RP.T057, a conclusione del monitoraggio radiologico ambientale del sito nucleare di

Bosco Marengo (AL) condotto nell'anno 2005.

A partire da quest'anno la rete di monitoraggio e le tecniche analitiche sono state

adeguate al fine di garantire controlli più accurati e mirati alle attività di decommissioning

dell'impianto o propedeutiche allo stesso.

2. CARATTERIZZAZIONE DEL SITO

La ex FN S.p.A. è attiva nel settore del ciclo del combustibile nucleare dal 1972, in qualità

di unico fabbricante nazionale di combustibile nucleare per le centrali elettronucleari

dell'ENEL. La produzione di combustibile è cessata nel 1990 e la società, ridenominata

"FN Nuove Tecnologie e Servizi Avanzati S.p.A." ha provveduto da tale data al

mantenimento in sicurezza dell'impianto nucleare. Le attività di smantellamento sono state

trasferite alla SO.G.I.N. con l'Ordinanza commissariale n. 6 del 25 giugno 2003.

Attualmente sono in corso alcune operazioni propedeutiche al definitivo smantellamento

dell'impianto – decommissioning – per il quale sono già stati avviati l'iter autorizzativo ai

sensi del D. Lgs. 230/95 e ss.mm.ii. e la procedura di VIA.

3. RIFERIMENTI LEGISLATIVI

Il quadro legislativo di riferimento è costituito dal D. Lgs. 230/95 e ss.mm.ii. e dalla Legge

n. 1860 del 31 dicembre 1962 e s.m.i., tuttavia attualmente è necessario fare riferimento

anche ai Decreti ed alle Ordinanze emanate dal 2003 ad oggi in seguito alla dichiarazione

dello stato di emergenza in relazione all'attività di smaltimento dei rifiuti radioattivi.

In particolare la Presidenza del Consiglio dei Ministri ha emanato in data 14 febbraio 2003

un Decreto che dichiara "lo stato di emergenza in relazione all'attività di smaltimento rifiuti

ARPA Ente di diritto pubblico - Centro Regionale per le Radiazioni Ionizzanti e Non Ionizzanti

Via Jervis, 30 - 10015 Ivrea (TO) - Tel. 012564511 - fax 01256453584 - Codice Fiscale - Partita IVA 07176380017 - E-mail: SC21@arpa.piemonte.it

radioattivi dislocati nelle regioni Lazio, Campania, Emilia Romagna, Basilicata e Piemonte" (sedi di installazioni nucleari).

Successivamente il 7 marzo 2003 è stata emanata la Ordinanza del Consiglio dei Ministri n. 3267 che dispone la nomina del Presidente SO.G.I.N. quale Commissario delegato con il compito di mettere in sicurezza i materiali radioattivi e di predisporre i piani di avvio delle procedure di smantellamento delle centrali nucleari.

Il Commissario delegato, Generale Carlo Jean, per ottemperare ai suoi compiti, ha emanato 20 Ordinanze che pianificano le azioni necessarie allo smantellamento accelerato degli impianti in deroga alla normativa vigente in materia.

In particolare, sono di interesse per quanto riguarda il sito nucleare di Bosco Marengo:

- l'Ordinanza n. 4 del 11 aprile 2003 del Commissario delegato che ha disposto il piano delle attività di adeguamento delle misure di protezione fisica e di progressiva diminuzione del rischio degli impianti;
- l'Ordinanza n. 5 del 29 aprile 2003 del Commissario delegato che ha fissato i limiti per l'allontanamento dei materiali solidi provenienti dalla dismissione degli impianti del ciclo del combustibile nucleare – non considerati rifiuti radioattivi – verso le discariche e gli impianti di riciclo;
- l'Ordinanza n. 6 del 25 giugno 2003 del Commissario delegato che ha stabilito il trasferimento delle licenze e delle autorizzazioni dell'impianto di fabbricazione del combustibile nucleare di proprietà di FN - Nuove Tecnologie e Servizi Avanzati S.p.a. a SO.G.I.N. S.p.a.;
- Ordinanza n. 7 del 9 luglio 2003 che ha aggiornato il piano ed il programma di dismissione dell'impianto di fabbricazione del combustibile nucleare di proprietà di FN -Nuove Tecnologie e Servizi Avanzati S.p.a.

Sono inoltre stati emanati:

 la Legge n. 368 del 24 dicembre 2003 (legge Scanzano), conversione del Decreto Legge n. 314 del 14 novembre 2003, che ha fissato modalità e tempi di realizzazione del Deposito nazionale dei rifiuti radioattivi;

- il Decreto del Presidente del Consiglio dei Ministri del 7 maggio 2004 che proroga lo stato di emergenza di cui al precedente Decreto;
- l'Ordinanza del Consiglio dei Ministri n. 3355 del 7 maggio 2004 dove sono contenute ulteriori disposizioni per la messa in sicurezza dei materiali radioattivi;
- il D.M. 2 dicembre 2004 "Indirizzi strategici e operativi alla S.O.G.I.N. Società gestione impianti nucleari S.p.A., ai sensi dell'articolo 13, comma 4, del decreto legislativo 16 marzo 1999, n. 79";
- II D.P.C.M. 4 marzo 2005 "Proroga dello stato di emergenza in relazione all'attività di smaltimento dei rifiuti radioattivi, dislocati nelle centrali nucleari di Trino, Caorso, Latina, Garigliano e nella piscina di Avogadro in località Saluggia, in condizioni di massima sicurezza";
- Il D.P.C.M. 17 febbraio 2006 "Proroga dello stato di emergenza in relazione all'attività di smaltimento dei rifiuti radioattivi, dislocati nelle centrali nucleari di Trino, Caorso, Latina, Garigliano, nella piscina di Avogadro in località Saluggia e ITREC di Trisaia, in condizioni di massima sicurezza".

Resta inoltre da citare il D. Lgs. 2 febbraio 2001 n. 31 "Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano" che, pur non riguardando le azioni di monitoraggio e controllo dei siti nucleari, fissa in particolare le caratteristiche radiometriche delle acque potabili.

4. STRATEGIE DI CONTROLLO

La normativa di riferimento (D. Lgs. 230/95 e ss.mm.ii.) pone dei valori limite sulla grandezza fisica "dose efficace" E, data dalla somma delle dosi efficaci ricevute per esposizione esterna e impegnate per inalazione o per ingestione a seguito dell'introduzione di radionuclidi verificatesi nel periodo di riferimento.

Il limite di dose efficace E per gli individui della popolazione è stabilito in 1 mSv per anno solare. Inoltre è fissato in 10 μ Sv per anno solare il limite per la non rilevanza radiologica: al di sotto di tale soglia si può ritenere del tutto trascurabile l'impatto radiologico.

Agenzia Regionale
per la Protezione Ambientale

I limiti fissati dalla normativa non sono direttamente confrontabili con i risultati analitici, che forniscono dei valori di contaminazione, dal momento che si tratta di grandezze fisiche di natura diversa:

- la dose efficace E [Sv] è la quantificazione del rischio dovuto all'esposizione a radiazioni ionizzanti:

- la concentrazione di un radionuclide in una matrice [Bq/kg] è un dato "grezzo", che può essere considerato soltanto come un punto di partenza per la valutazione della dose efficace, e quindi del rischio.

La stima della dose efficace deve necessariamente tenere conto di tutte le possibili vie di esposizione – *vie critiche* – per tutti gli individui della popolazione potenzialmente coinvolti – *gruppo critico*. Soltanto uno studio radioecologico dedicato alla pratica in esame e all'ambiente, umano e naturale, nel quale tale pratica viene svolta può permettere di valutare correttamente la dose efficace, cioè il rischio, attraverso la conoscenza dei dati di contaminazione di matrici ambientali e alimentari – che rappresentano la caratterizzazione dello stato radiologico del sito oggetto d'indagine.

A tal fine, conoscendo le specifiche dell' impianto da monitorare, è possibile formulare le seguenti ipotesi:

 gli effluenti liquidi, immessi nell'ambiente secondo la rispettiva formula di scarico, e quelli gassosi sono responsabili della eventuale contaminazione delle matrici ambientali: acqua superficiale, sedimenti fluviali, suolo, acqua di falda, particolato atmosferico;

 possono inoltre essere responsabili in maniera diretta della contaminazione delle matrici alimentari (ad esempio attraverso la deposizione al suolo della contaminazione presente in aria);

• la contaminazione delle matrici ambientali può trasferirsi alle matrici alimentari di produzione locale; può trasferirsi inoltre all'acqua potabile distribuita dagli acquedotti.

Le matrici ambientali contaminate sono responsabili della dose da esposizione esterna e da inalazione, mentre le matrici alimentari contaminate sono responsabili della dose da ingestione, secondo lo schema seguente.

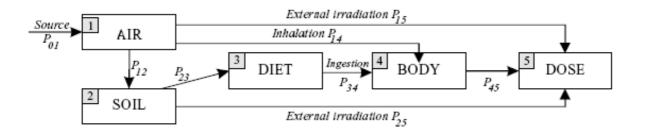


Figure I. Terrestrial pathways of transfer of radionuclides and dose to humans.

Se da un lato la dose ricevuta per esposizione esterna è direttamente misurabile, i contributi relativi alla dose impegnata per ingestione e per inalazione non sono direttamente misurabili né confrontabili con i risultati analitici - che forniscono dei valori di concentrazione in attività per la contaminazione da radionuclidi di una matrice data – e vanno perciò valutati.

Utilizzando opportune ipotesi è possibile determinare dei <u>valori soglia di concentrazione</u> (di seguito indicati con R), che comportano il raggiungimento del limite di dose efficace pari a 1 mSv per anno, e dei <u>valori soglia di concentrazione per la non rilevanza radiologica</u> (di seguito indicati con $R_{non\ rilevanza}$), che comportano il raggiungimento del limite per la non rilevanza radiologica pari a 10 μ Sv per anno.

Questi valori soglia possono essere confrontati con i dati misurati, in modo da disporre di un efficace strumento di valutazione: tali valori soglia non costituiscono dei limiti di legge, ma dei livelli operativi di confronto, validi esclusivamente nell'ambito delle assunzioni fatte. E' necessario puntualizzare che queste considerazioni non si applicano alle situazioni di emergenza, per le quali valgono i *livelli di riferimento di base* e *derivati* fissati dalla normativa vigente, ma, dal momento che riguardano il normale esercizio degli impianti, si applicano in condizioni stazionarie di contaminazione delle matrici ambientali ed alimentari: i valori soglia sono confrontabili con le concentrazioni medie osservate – intese sia come medie spaziali che come medie temporali – e l'occasionale superamento degli

Agenzia Regionale
per la Profezione Ambientale

stessi non comporta necessariamente il raggiungimento del limite di dose efficace di 1

mSv/anno. Ciò nonostante il superamento dei valori soglia per la non rilevanza radiologica

costituisce una condizione sufficiente, ma non necessaria, ad indagini più approfondite per

individuarne le cause e proporre, eventualmente, azioni volte alla minimizzazione del

rischio.

Inoltre si tiene conto dei valori di screening (di seguito indicati con S) fissati per alcune

grandezze a livello internazionale e/o comunitario (attività alfa e beta totale nelle acque

potabili e nel particolato atmosferico) e dei valori guida (di seguito indicati con G) fissati

dall'Organizzazione Mondiale per la Sanità (uranio totale nell'acqua potabile) per cui si

rimanda al paragrafo 5.

Il confronto delle concentrazioni di radioattività rilevate nelle varie matrici con i rispettivi

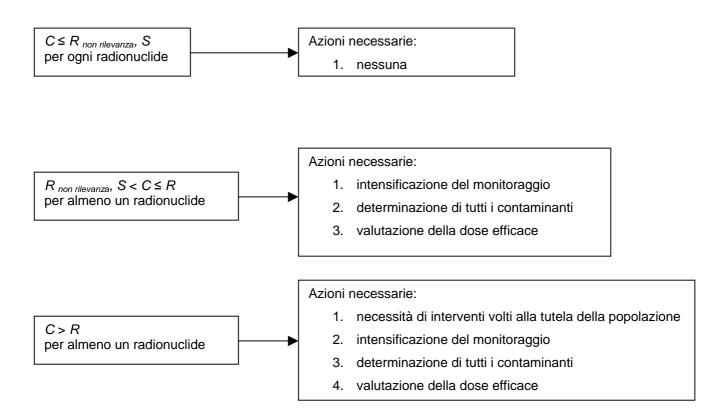
valori di screening S, di soglia per la non rilevanza radiologica R non rilevanza e di soglia R

consente di calibrare le successive azioni da intraprendere. Queste sono riassunte nello

schema seguente, dove *C* è la concentrazione misurata.

Questo nuovo approccio metodologico è stato sviluppato in relazione all'evoluzione attuale

e futura degli impianti, per consentire al meglio l'adeguamento delle azioni di monitoraggio


allo stato degli impianti stessi.

Tralasciamo in questa sede il dettaglio dei calcoli necessari per la determinazione dei

valori soglia, che riporteremo di volta in volta in calce ai risultati analitici per consentire un

immediato confronto.

5. TOSSICITA' CHIMICA DELL'URANIO

Tutte le considerazioni precedenti fanno riferimento agli aspetti radioprotezionistici legati all'esposizione a radiazioni ionizzanti anche se, per quanto riguarda l'uranio, i rischi connessi alla tossicità chimica risultano preponderanti.

Per quanto riguarda la tossicità chimica dell'uranio l'Organizzazione Mondiale per la Sanità fissa in 15 μ g/l il <u>valore guida</u> per la concentrazione di uranio totale nell'acqua potabile.

Anche i valori soglia per ingestione di alimenti contaminati e per inalazione devono tenere conto della tossicità chimica dell'uranio. In questo caso il valore di riferimento è costituito dal TDI (*Tolerable Daily Intake*) fissato dall'Organizzazione Mondiale per la Sanità in 0,6 μg/(kg _{massa corporea} giorno).

Agenzia Regionale
per la Protezione Ambientale

6. LA RETE DI MONITORAGGIO

Le matrici ambientali e alimentari considerate come indicatori locali sono indicate nella

tabella seguente, insieme alla frequenza minima di campionamento, alle determinazioni

analitiche effettuate ed ai valori di riferimento adottati di cui al paragrafo 4.

Inoltre – in seguito ad accordi di collaborazione posti in essere tra Arpa Piemonte, Apat ed

Esercenti – prima di ogni scarico di effluenti radioattivi liquidi viene prelevato ed analizzato

un campione di acqua di scarico dai serbatoi di raccolta; dopo lo scarico vengono effettuati

specifici controlli ambientali sui sedimenti fluviali e sull'acqua superficiale del Rio

Lovassina.

Tutti i prelievi sono effettuati secondo precise modalità di campionamento in modo da

garantire la significatività e la riproducibilità dei dati misurati.

In merito alle matrici ed ai punti di prelievo individuati si possono formulare le seguenti

considerazioni:

I'acqua potabile, oltre ad essere distribuita ad un'utenza molto vasta, consente di

controllare l'eventuale contaminazione della falda profonda;

· l'acqua di pozzo consente di controllare l'eventuale contaminazione della falda

superficiale;

- le matrici alimentari, oltre a fornire un indice del grado di diffusione della

contaminazione nell'ambiente, consentono di calcolare il contributo alla dose per gli

individui della popolazione in seguito all'ingestione di cibi eventualmente contaminati;

- i suoli prelevati intorno all'impianto consentono di controllare la contaminazione

conseguente il rilascio sia degli effluenti liquidi che aeriformi;

- l'acqua superficiale ed i sedimenti del Rio Lovassina consentono di verificare eventuali

fenomeni di accumulo;

il particolato atmosferico prelevato in continuo consente di monitorare gli eventuali

rilasci di contaminanti aeriformi dal camino dell'impianto.

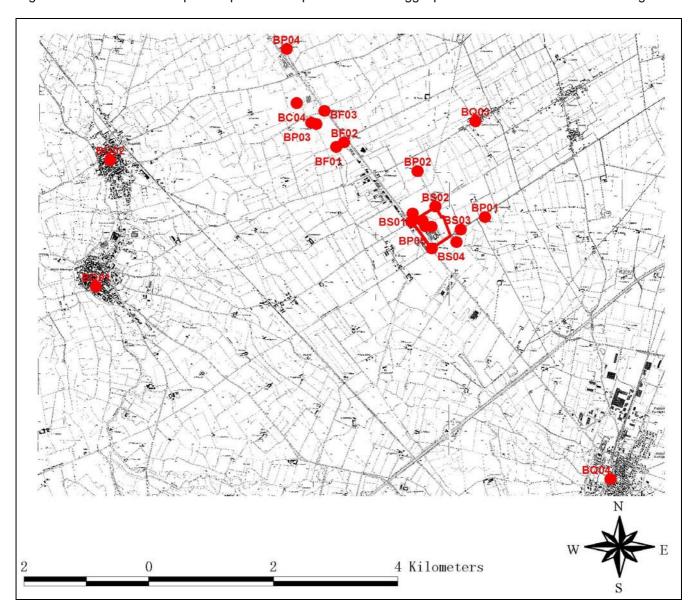
ARPA Ente di diritto pubblico - Centro Regionale per le Radiazioni Ionizzanti e Non Ionizzanti

Via Jervis, 30 - 10015 Ivrea (TO) - Tel. 012564511 - fax 01256453584 - Codice Fiscale - Partita IVA 07176380017 - E-mail: SC21@arpa.piemonte.it

Tabella 6.1 Piano di monitoraggio per il sito nucleare di Bosco Marengo.

Matrice	Numero punti di prelievo	Frequenza di campionamento	Parametro	S Bq/kg Bq/m³	<i>G</i> Bq/kg	R _{non} rilevanza j Bq/kg	<i>R_j</i> Bq/kg	Frequenza di misura
			α totale	5,0E-01				Tutti
Acqua di			β totale	1,0E+00				Tutti
falda	6	trimestrale	U totale		2,7E-01			Tutti
superficiale		unnesuale	U-234			1,8E-01	1,8E+00	Composito
Superficiale			U-235			1,9E-01	1,9E+00	Composito
			U-238			2,0E-01	2,0E+00	Composito
			α totale	5,0E-01				Tutti
			β totale	1,0E+00				Tutti
Acqua	4	comportrolo	U totale		2,7E-01			Tutti
potabile	4	semestrale	U-234		,	1,8E-01	1,8E+00	Composito
			U-235			1,9E-01	1,9E+00	Composito
			U-238			2,0E-01	2,0E+00	Composito
		semestrale	α totale	5,0E-01			,	Tutti
			β totale	1,0E+00				Tutti
Acqua			U totale	,	7,5E-02			Tutti
superficiale	2		U-234		,	6,4E-02	6,4E+00	Composito
-			U-235			6,8E-02	6,8E+00	Composito
			U-238			7,0E-02	7,0E+00	Composito
0!!!!			U-234			2,4E+02	2,4E+04	Tutti
Sedimenti	2	semestrale	U-235		2,8E+02	2,5E+02	2,5E+04	Tutti
fluviali			U-238			2,6E+02	2,6E+04	Tutti
0			U-234			2,4E+02	2,4E+04	Tutti
Suolo indisturbato	4	annuale	U-235		2,8E+02	2,5E+02	2,5E+04	Tutti
เกิดเรียนเปลเด			U-238			2,6E+02	2,6E+04	Tutti
Cuala			U-234			2,4E+02	2,4E+04	Tutti
Suolo coltivato	4	annuale	U-235		2,8E+02	2,5E+02	2,5E+04	Tutti
COILIVALO			U-238			2,6E+02	2,6E+04	Tutti
Cereali di			U-234			6,0E-01	6,0E+01	Tutti
coltivazione	4	annuale	U-235		7,0E-01	6,3E-01	6,3E+01	Tutti
locale			U-238			6,5E-01	6,5E+01	Tutti
Particolato	1	continue	α totale ritardata	5,0E-04	_	_		Tutti
atmosferico	1	continua	β totale ritardata	5,0E-03				Tutti

Di seguito sono riportate la tabella con le coordinate geografiche dei punti e la cartina con la dislocazione dei punti di prelievo dei campioni della rete di monitoraggio.


Tabella 6.2 Punti di prelievo del piano di monitoraggio per il sito nucleare di Bosco Marengo.

Codice punto	UTMX	UTMY	Matrice
BA01	*	*	particolato atmosferico
BF01	478429	4965590	acqua superficiale
			sedimenti
BF02	478554	4965660	acqua superficiale
			sedimenti
BF03	478240	4966163	acqua superficiale
			sedimenti
BP01	480815	4964460	acqua di falda superficiale
BP02	479733	4965200	acqua di falda superficiale
BP03	478030	4965978	acqua di falda superficiale
BP04	477630	4967159	acqua di falda superficiale
BP05	*	*	acqua di falda superficiale
BP06	*	*	acqua di falda superficiale
BQ01	474572	4963342	acqua di rete
BQ02	474800	4965376	acqua di rete
BQ03	480660	4966000	acqua di rete
BQ04	482829	4960251	acqua di rete
BS01	479636	4964388	suolo imperturbato
BS02	480021	4964630	suolo imperturbato
BS03	480423	4964262	suolo imperturbato
BS04	479962	4963957	suolo imperturbato
BC01	480357	4964061	suolo coltivato
			grano
BC02	479650	4964518	suolo coltivato
			piselli
BC03	478108	4965952	suolo coltivato
			grano
BC04	477791	4966293	suolo coltivato
			mais

^{*} Punti posizionati all'interno del perimetro dell'impianto.

Figura 6.1 Distribuzione dei punti di prelievo del piano di monitoraggio per il sito nucleare di Bosco Marengo.

7. METODOLOGIA DI MISURA

Le metodologie di analisi utilizzate sono state scelte per permettere la determinazione quantitativa dei contaminanti maggiormente rilevanti dal punto di vista radioprotezionistico rispetto alla natura degli impianti oggetto del monitoraggio.

I risultati delle analisi sono espressi come concentrazioni di attività per il singolo radionuclide riferite alla massa o al volume della matrice considerata (Bq/kg, Bq/l o Bq/m³ rispettivamente). La sensibilità della misura viene indicata dalla MAR (Minima Attività Rivelabile): tale grandezza rappresenta la minima quantità di radioattività che la metodica analitica è in grado di rivelare. Nel caso in cui non si riveli contaminazione da parte di un radionuclide verrà comunque considerata la MAR come limite superiore per la concentrazione del radionuclide stesso (nelle tabelle si vedrà il simbolo <). La sensibilità delle misure deve essere tale da garantire delle MAR sempre inferiori ai valori soglia per la non rilevanza radiologica e ai valori di screening.

Particolare attenzione viene posta, attraverso adeguate procedure, alla riferibilità e ripetibilità del dato: ad esempio le concentrazioni di contaminanti dei suoli sono sempre riferite al peso secco, in modo da risultare indipendenti dalla quantità di acqua presente al momento del prelievo. Gli alimenti vengono trattati come per il consumo, privandoli delle parti non eduli, e le concentrazioni sono riferite al peso fresco.

Per l'esecuzione delle analisi sono stati utilizzati i seguenti metodi contenuti nel "Catalogo prove" di Arpa Piemonte:

- U.RP.M742 "Determinazione dell'attività alfa totale da attinidi nell'acqua Eichrom Technologies, Inc. ACW11-03 Gross Alpha Radioactivity in Water" – metodo esterno non normalizzato non accreditato Sinal;
- U.RP.M751 "Determinazione di U-234, U-235 e U-238 in acqua Eichrom Technologies, Inc. ACW02 rev. 1.3 Uranium in Water" – metodo esterno non normalizzato non accreditato Sinal;

- U.RP.M752 "Determinazione di U-234, U-235 e U-238 in suolo, sedimento e fango -Eichrom Technologies, Inc. ACS07 rev. 1.5 Uranium in soli" – metodo esterno non normalizzato non accreditato Sinal;
- U.RP.M763 "Determinazione di U-234, U-235 e U-238 nei vegetali HASL-300, 28th edition, vol I U-02-RC rev. 1 2000 p. 2 + Eichrom Technologies, Inc. ACW02 rev. 1.3
 Uranium in Water" metodo esterno non normalizzato non accreditato Sinal;
- U.RP.M795 "Determinazione dell'attività alfa totale e beta totale in acqua mediante contatore proporzionale a flusso di gas - EPA METHOD 9310 rev. 0/1986 Gross alpha and gross beta" – metodo esterno non normalizzato non accreditato Sinal;
- U.RP.M808 "Determinazione del contenuto di attività alfa totale e beta nel particolato atmosferico – APAT CTN-AGF AB 01" – metodo esterno non normalizzato non accreditato Sinal;
- U.T2.M038 "Ricerca di radionuclidi mediante spettrometria gamma ad alta risoluzione"
 metodo interno non accreditato Sinal;
- VC.T2.M098 "Determinazione dell'attività alfa totale" metodo interno non accreditato
 Sinal:
- VC.T2.M099 "Determinazione dell'attività beta totale" metodo interno non accreditato
 Sinal.

8. STRUMENTAZIONE UTILIZZATA

Per l'esecuzione delle misure radiometriche è stata utilizzata la seguente strumentazione:

- catena spettrometrica alfa con rivelatore al silicio a barriera superficiale e software di elaborazione "Alpha Vision versione 5.31" della EG&G Ortec;
- contatore proporzionale a flusso di gas Berthold mod. LB 770;
- contatore a scintillazione Wallach mod. 1414;
- Catene spettrometriche gamma con rivelatore al germanio iperpuro di tipo p o n e software di elaborazione "Gamma Vision - versione 6.0" della EG&G Ortec.

9. MONITORAGGIO AMBIENTALE

Nelle tabelle e nei grafici seguenti sono riportati gli andamenti della contaminazione delle matrici ambientali ed alimentari relativamente al monitoraggio del 2005.

Acqua potabile di rete

Nei campioni di acqua potabile distribuita dagli acquedotti di Bosco Marengo (BQ01), Frugarolo (BQ02), Quatto Cascine (BQ03) e Pozzolo Formigaro (BQ04), tutti i valori di concentrazione dell'attività degli Attinidi totali, dell'attività alfa totale e dell'attività beta totale si sono sempre mantenuti nettamente al di sotto dei *valori guida* e dei *valori di screening*.

Questo consente di escludere la presenza di uranio in quantità anomale; sono in corso le misure di spettrometria alfa al fine di valutare correttamente anche i rapporti isotopici.

Tabella 9.1 Risultati delle misure sui campioni di acqua potabile di rete.

Punto	Numero campione	Data prelievo		Attinidi Bq/I		α totale Bq/I		β totale Bq/I
BQ01	05/00423	21/04/2005		1,3E-01 ± 1,3E-02	<	1,2E-01		3,0E-01 ± 1,1E-01
	05/01059	29/11/2005		4,9E-02 ± 1,0E-02	<	9,6E-02	<	1,9E-01
BQ02	05/00424	21/04/2005	<	1,7E-02	<	1,5E-01	<	2,5E-01
	05/01058	29/11/2005		4,6E-02 ± 1,0E-02	<	1,4E-01	<	2,1E-01
BQ03	05/00422	21/04/2005	<	1,7E-02	<	1,4E-01	<	2,3E-01
	05/01057	29/11/2005	<	1,5E-02	<	1,2E-01	<	2,3E-01
BQ04	05/00421	21/04/2005	<	1,7E-02	<	1,3E-01	<	2,7E-01
	05/01056	29/11/2005		2,9E-02 ± 9,6E-03	<	1,1E-01	<	1,9E-01
G, S				2,7E-01		5,0E-01		1,0E+00

1,2E+00 1.0E+00 8,0E-01 6,0E-01 4,0E-01 2,0E-01 0,0E+00 BQ01 BQ02 BQ04 BQ03 G Attinidi Attinidi Alfa totale S Alfa S Beta Beta totale Bq/I

Figura 9.1 Andamento delle misure sui campioni di acqua potabile di rete (Tabella 9.1).

Acqua di falda superficiale

Nell'acqua di falda superficiale prelevata nei pozzi privati nei punti BP01, BP02, BP03, BP04, BP05 e BP06 tutti i valori di concentrazione dell'attività degli Attinidi totali, dell'attività alfa totale e dell'attività beta totale si sono sempre mantenuti nettamente al di sotto dei *valori guida* e dei *valori di screening*.

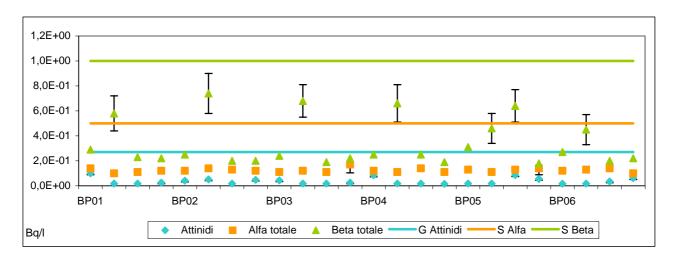

Questo consente di escludere la presenza di uranio in quantità anomale; sono in corso le misure di spettrometria alfa al fine di valutare correttamente anche i rapporti isotopici.

Tabella 9.2 Risultati delle misure sui campioni di acqua di falda superficiale.

Punto	Numero campione	Data prelievo		Attinidi Bq/l		α totale Bq/I		β totale Bq/I
BP01	05/00416	21/04/2005		1,0E-01 ± 1,2E-02	<	1,4E-01	<	2,9E-01
	05/00631	15/06/2005	<	1,8E-02	<	1,0E-01		5,8E-01 ± 1,4E-01
	05/00797	05/09/2005	<	1,8E-02	<	1,1E-01	<	2,3E-01
	05/01081	06/12/2005		2,6E-02 ± 9,6E-03	<	1,2E-01	<	2,2E-01
BP02	05/00415	21/04/2005		4,1E-02 ± 1,0E-02	<	1,2E-01	<	2,5E-01
	05/00632	15/06/2005		5,1E-02 ± 1,0E-02	<	1,4E-01		7,4E-01 ± 1,6E-01
	05/00796	05/09/2005	<	1,8E-02	<	1,3E-01	<	2,0E-01
	05/01109	13/12/2005		4,8E-02 ± 1,0E-02	<	1,2E-01	<	2,0E-01
BP03	05/00413	21/04/2005		4,4E-02 ± 1,1E-02	<	1,1E-01	<	2,4E-01
	05/00628	15/06/2005	<	1,8E-02	<	1,2E-01		6,8E-01 ± 1,3E-01
	05/00795	05/09/2005	<	1,8E-02	<	1,1E-01	<	1,9E-01
	05/01108	13/12/2005		2,6E-02 ± 9,6E-03		1,7E-01 ± 6,6E-02	<	2,2E-01
BP04	05/00414	21/04/2005		8,4E-02 ± 1,2E-02	<	1,2E-01	<	2,5E-01
	05/00627	15/06/2005	<	1,8E-02	<	1,1E-01		6,6E-01 ± 1,5E-01
	05/00811	08/09/2005	<	1,8E-02	<	1,4E-01	<	2,5E-01
	05/01060	29/11/2005	<	1,5E-02	<	1,1E-01	<	1,9E-01
BP05	05/00434	29/04/2005	<	1,8E-02	<	1,3E-01	<	3,1E-01
	05/00629	15/06/2005	<	1,8E-02	<	1,1E-01		4,6E-01 ± 1,2E-01
	05/00785	31/08/2005		8,6E-02 ± 1,2E-02	<	1,3E-01		6,4E-01 ± 1,3E-01
	05/01079	06/12/2005		5,5E-02 ± 1,0E-02		1,4E-01 ± 5,2E-02	<	1,8E-01
BP06	05/00433	29/04/2005	<	1,7E-02	<	1,2E-01	<	2,7E-01
	05/00630	15/06/2005	<	1,8E-02	<	1,3E-01		4,5E-01 ± 1,2E-01
	05/00786	31/08/2005		3,4E-02 ± 9,6E-03	<	1,4E-01	<	2,0E-01
	05/01080	06/12/2005		6,1E-02 ± 1,1E-02	<	1,0E-01	<	2,2E-01
G, S				2,7E-01		5,0E-01		1,0E+00

Figura 9.2 Andamento delle misure sui campioni di acqua di falda superficiale (Tabella 9.2).

Suolo imperturbato – strato superficiale

Nello strato superficiale (0-5 cm) dei suoli prelevati all'esterno dell'impianto è presente contaminazione da uranio del tutto confrontabile con le concentrazioni comunemente riscontrabili in questa matrice per altre zone della provincia e della regione e non sono state evidenziate alterazioni nei rapporti isotopici: pertanto tale contaminazione è attribuibile all'uranio naturale e non direttamente riconducibile alle attività dell'impianto. Tutti i valori si sono sempre mantenuti nettamente al di sotto dei valori soglia per la non rilevanza radiologica e dei valori guida – per quanto riguarda l'uranio totale.

Tabella 9.3 Risultati delle misure sui campioni di suolo indisturbato – strato superficiale.

Punto	Numero campione	Data prelievo	U-234 Bq/kg	U-235 Bq/kg	U-238 Bq/kg	Arricchimento
BS01	05/00417	21/04/2005	1,3E+01 ± 9,0E-01	7,1E-01 ± 1,4E-01	1,4E+01 ± 9,2E-01	0,79% ± 0,16%
BS02	05/00418	21/04/2005	1,8E+01 ± 1,2E+00	9,6E-01 ± 2,1E-01	1,7E+01 ± 1,2E+00	0,88% ± 0,20%
BS03	05/00419	21/04/2005	1,5E+01 ± 9,1E-01	8,3E-01 ± 1,1E-01	1,5E+01 ± 9,1E-01	0,86% ± 0,12%
BS04	05/00420	21/04/2005	1,8E+01 ± 2,6E+00	9,3E-01 ± 1,7E-01	1,7E+01 ± 2,5E+00	0,85% ± 0,20%
R _{non rilevanza}		2,4E+02	2,5E+02	2,6E+02	0,71%	

Suoli coltivati e relative coltivazioni

Nello strato superficiale (0-5 cm) dei suoli coltivati (grano, mais, piselli) è presente contaminazione da uranio del tutto confrontabile con le concentrazioni comunemente riscontrabili in questa matrice per altre zone della provincia e della regione e non sono state evidenziate alterazioni nei rapporti isotopici: pertanto tale contaminazione è attribuibile all'uranio naturale e non direttamente riconducibile alle attività dell'impianto.

Tutti i valori si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica* e dei *valori guida* – per quanto riguarda l'uranio totale.

Tabella 9.4 Risultati delle misure sui campioni di suolo coltivato.

Punto	Numero campione	Data prelievo	U-234 Bq/kg	U-235 Bq/kg	U-238 Bq/kg	Arricchimento
BC01	05/00670	29/06/2005	2,1E+01 ± 1,3E+00	9,3E-01 ± 1,3E-01	2,2E+01 ± 1,3E+00	$0,66\% \pm 0,10\%$
BC02	05/00671	29/06/2005	2,4E+01 ± 1,5E+00	1,2E+00 ± 1,6E-01	2,4E+01 ± 1,5E+00	0,78% ± 0,11%
BC03	05/00673	29/06/2005	2,4E+01 ± 1,4E+00	1,2E+00 ± 1,8E-01	2,4E+01 ± 1,5E+00	0,78% ± 0,13%
BC04	05/00788	31/08/2005	2,6E+01 ± 3,8E+00	1,3E+00 ± 2,8E-01	2,6E+01 ± 3,8E+00	$0,78\% \pm 0,20\%$
R _{non rileva}	anza		2,4E+02	2,5E+02	2,6E+02	0,71%

Anche per quanto riguarda i prodotti – grano, mais e piselli – coltivati nei terreni sopra riportati i dati sono sempre inferiori ai *valori soglia per la non rilevanza radiologica* e dei *valori guida* – per quanto riguarda l'uranio totale.

Tabella 9.5 Risultati delle misure sui campioni di grano, mais e piselli coltivati nei suoli di cui alla Tabella 9.4.

Punto	Numero campione	Data prelievo	U-234 Bq/kg		U-235 Bq/kg		U-238 Bq/kg
BC01	05/00669	29/06/2005	$9,4E-03 \pm 2,7E-03$		$6,8E-03 \pm 2,3E-03$		$8,4E-03 \pm 2,8E-03$
BC02	05/00633	15/06/2005 <	< 3,2E-03	<	3,4E-03	<	2,2E-03
BC03	05/00672	29/06/2005 <	< 3,3E-02	<	3,4E-02	<	2,1E-02
BC04	05/00787	31/08/2005	1,2E-02 ± 1,9E-03	<	1,6E-03		7,9E-03 ± 1,4E-03
R _{non rilevanz}	ra		6,0E-01		6,3E-01		6,5E-01

Acqua superficiale

Nell'acqua superficiale del Rio Lovassina prelevata a monte della condotta di scarico degli effluenti radioattivi liquidi (BF01), in corrispondenza della condotta (BF02) ed a valle della stessa (BF03) tutti i valori di concentrazione dell'attività degli Attinidi totali, dell'attività alfa totale e dell'attività beta totale si sono sempre mantenuti nettamente al di sotto dei *valori guida* e dei *valori di screening*.

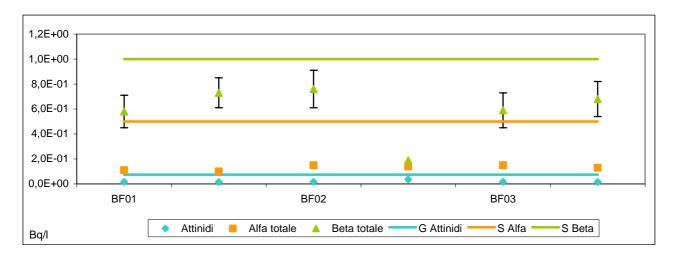

Questo consente di escludere la presenza di uranio in quantità anomale; sono in corso le misure di spettrometria alfa al fine di valutare correttamente anche i rapporti isotopici.

Tabella 9.6 Risultati delle misure sui campioni di acqua superficiale del Rio Lovassina.

Punto	Numero campione	Data prelievo		Attinidi Bq/I		α totale Bq/l	β totale Bq/l
BF01	05/00397	13/04/2005	<	1,7E-02	<	1,1E-01	5,8E-01 ± 1,3E-01
	05/01103	13/12/2005	<	1,5E-02	<	1,0E-01	7,3E-01 ± 1,2E-01
BF02	05/00395	13/04/2005	<	1,7E-02	<	1,5E-01	7,6E-01 ± 1,5E-01
	05/01105	13/12/2005		3,6E-02 ± 1,0E-02	<	1,4E-01	< 1,9E-01
BF03	05/00399	13/04/2005	<	1,7E-02	<	1,5E-01	5,9E-01 ± 1,4E-01
	05/01106	13/12/2005	<	1,5E-02	<	1,3E-01	6,8E-01 ± 1,4E-01
G, S				7,5E-02		5,0E-01	1,0E+00

Figura 9.3 Andamento delle misure sui campioni di acqua superficiale (Tabella 9.6).

Sedimenti

Nei sedimenti del Rio Lovassina prelevati a monte della condotta di scarico degli effluenti radioattivi liquidi (BF01) ed a valle della stessa (BF03) è presente contaminazione da uranio del tutto confrontabile con le concentrazioni comunemente riscontrabili in questa matrice per altre zone della provincia e della regione e non sono state evidenziate alterazioni nei rapporti isotopici: pertanto tale contaminazione è attribuibile all'uranio naturale e non direttamente riconducibile alle attività dell'impianto. Nel punto di immissione degli scarichi di effluenti radioattivi liquidi (BF02) i valori di concentrazione di uranio sono confrontabili con i punti a monte (BF01) e a valle (BF03). In una sola occasione è stata

riscontrata una percentuale di arricchimento superiore a quella corrispondente all'uranio naturale: tale alterazione del rapporto isotopico, peraltro non significativa dal punto di vista radioprotezionistico, è attribuibile allo scarico di effluenti radioattivi liquidi effettuato nel settembre del 2005 da parte dell'impianto. Non si evidenziano comunque fenomeni di accumulo.

Tutti i valori si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica* e dei *valori guida* – per quanto riguarda l'uranio totale.

Tabella 9.7 Risultati delle misure sui campioni di sedimenti del Rio Lovassina.

Punto	Numero campione	Data prelievo	U-234 Bq/kg	U-235 Bq/kg	U-238 Bq/kg	Arricchimento
BF01	13/04/2005	05/00398	2,1E+01 ± 1,3E+00	1,1E+00 ± 1,5E-01	2,0E+01 ± 1,3E+00	$0.86\% \pm 0.13\%$
	13/12/2005	05/01104	2,9E+01 ± 4,2E+00	1,5E+00 ± 3,1E-01	2,6E+01 ± 3,8E+00	$0,90\% \pm 0,23\%$
BF02	13/04/2005	05/00396	3,7E+01 ± 2,2E+00	1,8E+00 ± 2,1E-01	$3,5E+01 \pm 2,1E+00$	$0,80\% \pm 0,11\%$
	05/09/2005	05/00794	5,6E+01 ± 8,1E+00	3,0E+00 ± 5,3E-01	2,8E+01 ± 4,1E+00	1,67% ± 0,39%
BF03	13/04/2005	05/00400	2,5E+01 ± 1,6E+00	1,1E+00 ± 2,1E-01	2,1E+01 ± 1,3E+00	0,81% ± 0,16%
	13/12/2005	05/01107	2,5E+01 ± 3,7E+00	1,2E+00 ± 2,5E-01	2,4E+01 ± 3,5E+00	$0,78\% \pm 0,20\%$
R _{non rileva}	nza		2,4E+02	2,5E+02	2,6E+02	0,71%

Particolato atmosferico

Nel particolato atmosferico prelevato in continuo nel punto BA01 nei pressi dell'impianto i valori dell'attività alfa e beta totale sono perfettamente comparabili con quelli riscontrati in media nella regione e sono imputabili alla presenza di radionuclidi di origine naturale.

Tutti i valori si sono sempre mantenuti nettamente al di sotto dei *valori di screening* ad esclusione dei dati relativi al periodo 24-27/12/2005 (evidenziati in tabella), che sono completamente spiegati dalla concentrazione media di Be-7 per la settimana 20-27/12/2006 (per cui non è definibile un *valore soglia* essendo un radionuclide naturale).

Tabella 9.8 Risultati delle misure di screening sui campioni di particolato atmosferico.

Punto	Numero campione	Data inizio	Data fine		α totale Bq/m³	β totale Bq/m³
BA01	05/01006	14/11/2005	15/11/2005		1,8E-04 ± 4,9E-05	2,6E-03 ± 1,3E-04
	05/01007	15/11/2005	16/11/2005		1,9E-04 ± 4,9E-05	3,2E-03 ± 1,3E-04
	05/01008	16/11/2005	17/11/2005		2,3E-04 ± 5,1E-05	3,6E-03 ± 1,4E-04
	05/01009	17/11/2005	18/11/2005		1,4E-04 ± 4,3E-05	2,1E-03 ± 1,3E-04
	05/01010	18/11/2005	19/11/2005	<	6,7E-05	9,7E-04 ± 1,1E-04
	05/01011	19/11/2005	20/11/2005	<	7,6E-05	8,3E-04 ± 1,0E-04
	05/01012	20/11/2005	21/11/2005	<	7,3E-05	1,8E-03 ± 1,1E-04
	05/01013	21/11/2005	22/11/2005	<	1,1E-04	2,2E-03 ± 1,5E-04
	05/01048	22/11/2005	23/11/2005	<	7,7E-05	5,9E-04 ± 1,1E-04
	05/01049	23/11/2005	24/11/2005	<	7,1E-05	9,1E-04 ± 1,0E-04
	05/01050	24/11/2005	25/11/2005		$1,3E-04 \pm 4,8E-05$	1,3E-03 ± 1,0E-04
	05/01051	25/11/2005	26/11/2005		$1,5E-04 \pm 4,7E-05$	1,9E-03 ± 1,1E-04
	05/01052	26/11/2005	27/11/2005		$1,6E-04 \pm 4,8E-05$	2,7E-03 ± 1,4E-04
	05/01053	27/11/2005	28/11/2005	<	7,4E-05	1,8E-03 ± 1,3E-04
	05/01054	28/11/2005	29/11/2005		$1,3E-04 \pm 4,8E-05$	2,9E-03 ± 1,4E-04
	05/01072	29/11/2005	30/11/2005		$1,5E-04 \pm 4,2E-05$	2,8E-03 ± 1,4E-04
	05/01073	30/11/2005	01/12/2005		1,1E-04 ± 4,1E-05	2,5E-03 ± 1,2E-04
	05/01074	01/12/2005	02/12/2005	<	6,6E-05	2,0E-03 ± 1,2E-04
	05/01075	02/12/2005	03/12/2005	<	7,7E-05	1,7E-03 ± 1,4E-04
	05/01076	03/12/2005	04/12/2005	<	7,3E-05	1,1E-03 ± 1,1E-04
	05/01095	06/12/2005	07/12/2005	<	6,7E-05	1,7E-03 ± 1,0E-04
	05/01096	07/12/2005	08/12/2005	<	6,9E-05	1,1E-03 ± 1,1E-04
	05/01097	08/12/2005	09/12/2005	<	7,5E-05	2,0E-03 ± 1,4E-04
	05/01098	09/12/2005	10/12/2005	<	7,7E-05	1,4E-03 ± 1,1E-04
	05/01099	10/12/2005	11/12/2005	<	6,3E-05	1,1E-03 ± 9,9E-05
	05/01100	11/12/2005	12/12/2005	<	6,0E-05	1,4E-03 ± 1,1E-04
	05/01101	12/12/2005	13/12/2005	<	6,7E-05	2,2E-03 ± 1,3E-04
	05/01127	13/12/2005	14/12/2005		1,4E-04 ± 5,2E-05	2,2E-03 ± 1,3E-04
	05/01128	14/12/2005	15/12/2005	<	8,0E-05	1,6E-03 ± 1,1E-04
	05/01129	15/12/2005	16/12/2005		$1,4E-04 \pm 5,2E-05$	1,8E-03 ± 1,1E-04
	05/01130	16/12/2005	17/12/2005	<	7,7E-05	7,9E-04 ± 9,5E-05
	05/01131	17/12/2005	18/12/2005	<	6,9E-05	3,6E-04 ± 9,7E-05
	05/01132	18/12/2005	19/12/2005	<	7,5E-05	4,7E-04 ± 1,0E-04
	05/01133	19/12/2005	20/12/2005		$1,3E-04 \pm 4,3E-05$	1,3E-03 ± 1,2E-04
	05/01150	20/12/2005	21/12/2005		1,5E-04 ± 4,2E-05	2,1E-03 ± 1,3E-04
	05/01151	21/12/2005	22/12/2005		$2,5E-04 \pm 4,8E-05$	3,3E-03 ± 1,3E-04
	05/01152	22/12/2005	23/12/2005		$1,7E-04 \pm 5,4E-05$	3,3E-03 ± 1,6E-04
	05/01153	23/12/2005	24/12/2005		$3,4E-04 \pm 6,1E-05$	4,8E-03 ± 1,9E-04
	05/01154	24/12/2005	25/12/2005		4,2E-04 ± 6,7E-05	5,7E-03 ± 1,7E-04
	05/01155	25/12/2005	26/12/2005		$3,5E-04 \pm 6,3E-05$	6,2E-03 ± 1,9E-04
	05/01156	26/12/2005	27/12/2005		2,2E-04 ± 5,3E-05	5,4E-03 ± 1,6E-04
	06/00006	27/12/2005	28/12/2005		2,3E-04 ± 5,0E-05	4,2E-03 ± 1,5E-04
	06/00007	28/12/2005	29/12/2005	<	7,4E-05	9,6E-04 ± 1,1E-04
	06/00008	29/12/2005	30/12/2005	<	6,3E-05	1,2E-03 ± 1,1E-04
	06/00009	30/12/2005	31/12/2005		1,4E-04 ± 4,2E-05	2,5E-03 ± 1,3E-04
S					5,0E-04	5,0E-03

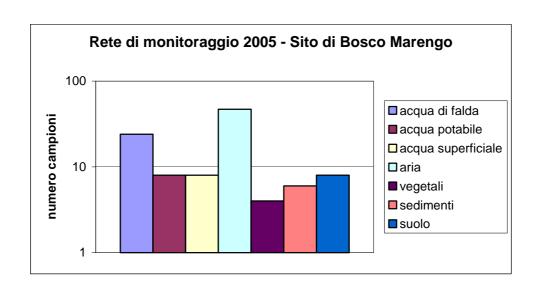
1,0E-01 1,0E-02 1,0E-03 1,0E-04 1,0E-05 14/11/2005 21/11/2005 28/11/2005 05/12/2005 12/12/2005 19/12/2005 26/12/2005 Alfa totale Beta totale S Alfa S Beta Bq/m3

Figura 9.4 Andamento delle misure di screening sui campioni di particolato atmosferico (Tabella 9.8).

Nella tabella seguente sono riportati per completezza i dati relativi alle misure di spettrometria gamma effettuate sui campioni compositi settimanali di particolato atmosferico (per Be-7 non è definibile un *valore soglia* essendo un radionuclide naturale).

Tabella 9.9 Risultati delle misure sui campioni compositi settimanali di particolato atmosferico.

Punto	Numero campione	Data inizio	Data fine		Cs-137 Bq/m³		I-131 Bq/m³		Be-7 Bq/m³
BA01	05/01014	14/11/2005	22/11/2005	<	3,0E-05	<	1,3E-04		2,9E-03 ± 8,0E-04
	05/01055	22/11/2005	29/11/2005	<	8,5E-05	<	6,7E-04	<	9,9E-04
	05/01078	29/11/2005	05/12/2005	/	9,4E-05	<	1,1E-03	٧	1,2E-03
	05/01102	06/12/2005	13/12/2005	<	7,1E-05	<	5,8E-04	<	1,2E-03
	05/01134	13/12/2005	20/12/2005	<	5,5E-05	<	6,7E-04		3,1E-03 ± 8,4E-04
	05/01157	20/12/2005	27/12/2005	<	7,7E-05	<	7,2E-04		4,9E-03 ± 8,1E-04
	06/00013	27/12/2005	03/01/2006	<	8,4E-05	<	1,4E-03		2,1E-03 ± 8,0E-04
R _{non rileva}	anza				3,0E-01		7,3E-02		-



10. STATO DI ATTUAZIONE DELLA RETE DI MONITORAGGIO

La rete di monitoraggio radiologico ambientale del sito nucleare di Bosco Marengo dell'anno 2005 è stata potenziata con l'introduzione di nuovi punti di prelievo e di nuove matrici e soprattutto con l'adozione di tecniche analitiche specialistiche adeguate alla situazione.

Il programma di monitoraggio è stato completato a garanzia della tutela dell'ambiente e della popolazione.

Figura 10.1 Distribuzione dei campioni prelevati nel corso del 2005 per la rete di monitoraggio radiologico ambientale del sito nucleare di Bosco Marengo.

11. VALUTAZIONI DOSIMETRICHE

Sulla base dei dati sopra esposti è possibile calcolare la dose efficace per il gruppo critico della popolazione. Pur assumendo come ipotesi estremamente cautelativa che le concentrazioni di uranio misurate siano imputabili alle attività dell'impianto, risulta ampiamente rispettato il limite di 1 mSv/anno per gli individui del gruppo critico ed in particolare risulta rispettato anche il limite di non rilevanza radiologica di 10µSv/anno.

Tabella 11.1 Stima dell'equivalente di dose efficace sulla base dei risultati riportati al paragrafo 9.

Via critica	Matrice	Dose μSv/anno
Ingestione	acqua potabile	2,2
	acqua superficiale	3,0
	coltivazioni locali	0,6
Totale		5,8
Limite non rilevanza radiologica		10
Limite di dose efficace		1000

Per quanto riguarda la tossicità chimica con considerazioni analoghe è possibile valutare le concentrazioni medie di uranio nell'acqua potabile ed il rateo di introduzione medio, per le stesse vie critiche considerate per le valutazioni radioprotezionistiche. Anche in questo caso sono rispettati i limiti indicati dall'Organizzazione Mondiale della Sanità.

Tabella 11.2 Stima della concentrazione media di uranio nell'acqua potabile sulla base dei risultati riportati al paragrafo 9.

Matrice	Concentrazione μg/l
Acqua potabile	2,2
Limite OMS	15

Tabella 11.3 Stima del rateo medio di introduzione di uranio sulla base dei risultati riportati al paragrafo 9.

Via critica	Matrice	TDI μg/(kg giorno)	
Ingestione	acqua superficiale	0,16	
	coltivazioni locali	0,03	
Totale		0,19	
Limite OMS		0,60	

Le valutazioni sopra riportate permettono di dimostrare l'adeguatezza delle strategie di controllo riportate ai paragrafi 4 e 5.

12. VALUTAZIONI CONCLUSIVE

L'analisi dei dati relativi alle misure effettuate nell'anno 2005 permette di affermare che lo stato radiologico dell'ambiente circostante il sito di Bosco Marengo è buono e non presenta alcuna criticità. In particolare si possono formulare le seguenti considerazioni:

- nell'acqua potabile e di falda superficiale non è mai stata riscontrata una significativa contaminazione da Attinidi totali. Questo consente di escludere la presenza di uranio in quantità anomale;
- nell'acqua potabile il rispetto dei valori di screening per l'attività alfa totale e beta totale,
 fissati dall'Organizzazione Mondiale della Sanità, garantisce il contestuale rispetto dei limiti fissati dal D. Lgs 31/2001;
- la contaminazione da uranio dei suoli è compatibile con i valori riscontrabili in altre zone della provincia e della regione e consente di escludere qualsiasi contributo attribuibile alle attività dell'impianto;
- nei prodotti di coltura sono state occasionalmente riscontrate tracce di uranio non correlabile agli scarichi dell'impianto;
- la presenza di uranio nei sedimenti del Rio Lovassina, sia a monte che a valle degli scarichi, è compatibile con i valori riscontrabili in altre zone della provincia e della regione; solo in prossimità del punto di immissione del collettore è in parte attribuibile agli scarichi di effluenti radioattivi liquidi dell'impianto. Non si evidenziano comunque situazioni di accumulo.

Il calcolo della dose ai gruppi critici della popolazione ha confermato che non sono stati superati il limite di 1 mSv/anno per gli individui del gruppo critico, ed in particolare il limite di non rilevanza radiologica di 10µSv/anno, ed i limiti indicati dall'Organizzazione Mondiale della Sanità per la tossicità chimica, come suggerito dal rispetto dei livelli di riferimento adottati.

Da questo quadro non emergono pertanto situazioni di criticità per l'ambiente e per la popolazione.