

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Siti Nucleari

MONITORAGGIO RADIOLOGICO AMBIENTALE SITO NUCLEARE DI BOSCO MARENGO (AL)

Rapporto anno 2016

Relazione tecnica n. 20/SS21.02/2017

	Funzione: Componente SS Siti Nucleari	
Redazione	Nome: Luca Albertone	
	Funzione: Componente SS Siti Nucleari	
	Nome: Manuela Marga	
	Funzione: Componente SS Siti Nucleari	
	Nome: Giuseppe Tozzi	
Verifica	Funzione: Responsabile SS Siti Nucleari	
Vernica	Nome: Laura Porzio	
	Funzione: Responsabile	
Approvazione	Dipartimento Tematico Radiazioni	
	Nome: Giovanni d'Amore	

INDICE

1	PREMESSA	3
2	ATTIVITÀ DI MONITORAGGIO E CONTROLLO	3
3	LE STRATEGIE DI CONTROLLO	4
4	ATTIVITÀ SVOLTE DALL' IMPIANTO NELL'ANNO 2016	6
5	LE RETI DI MONITORAGGIO	6
6	METODOLOGIA DI MISURA	7
7	STRUMENTAZIONE UTILIZZATA	10
8	ATTIVITÀ DI MONITORAGGIO	10
8.1.	Monitoraggio ambientale ordinario – risultati delle misure	10
9	ATTIVITÀ DI CONTROLLO	28
9.1.	Controllo degli scarichi di effluenti radioattivi	28
9.2.	Controllo dei materiali allontanabili dall'impianto	29
10	VALUTAZIONI DOSIMETRICHE	29
11	VALUTAZIONI CONCLUSIVE	30

1 PREMESSA

In questa relazione vengono riassunti i risultati del monitoraggio radiologico ambientale condotto da Arpa Piemonte nell'anno 2016 presso il sito nucleare di Bosco Marengo (AL).

Il quadro legislativo di riferimento è costituito dal D. Lgs. 17 marzo 1995, n. 230 e ss.mm.ii. "Attuazione delle direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 2006/117/Euratom in materia di radiazioni ionizzanti, 2009/71/Euratom in materia di sicurezza nucleare degli impianti nucleari e 2011/70/Euratom in materia di gestione sicura del combustibile esaurito e dei rifiuti radioattivi derivanti da attività civili" e dalla Legge n. 1860 del 31 dicembre 1962 e s.m.i.

In particolare, per quanto riguarda il monitoraggio della radioattività ambientale, l'art. 104 del sopraccitato Decreto Legislativo demanda la gestione delle reti uniche regionali alle singole Regioni le quali, per l'effettuazione dei prelievi e delle misure, debbono avvalersi delle strutture pubbliche idoneamente attrezzate.

In quest'ambito la Regione Piemonte si avvale di Arpa Piemonte ed ha emanato le disposizioni per lo svolgimento di dette attività di monitoraggio con la DGR n. 17-11237 del 9 dicembre 2003 "Disposizioni per lo svolgimento delle attività di controllo e di sorveglianza ambientale in materia di radiazioni ionizzanti degli impianti nucleari e di altre particolari installazioni di cui al D.Lgs. 17 marzo 1995, n. 230 e s.m.i. " e successivamente con la legge regionale n. 5 del 18 febbraio 2010 "Norme sulla protezione dai rischi da esposizione a radiazioni ionizzanti".

I compiti di controllo su tutti gli aspetti della sicurezza nucleare sono invece in capo all'ISPRA, autorità di sicurezza nazionale (capo VII del D. Lgs. 230/95 e ss.mm.ii.). Tuttavia Arpa Piemonte svolge alcune attività di controllo in collaborazione con ISPRA in attuazione del "Protocollo operativo tra Arpa Piemonte e Apat" siglato in data 16 giugno 2005 e rinnovato nel 2015.

2 ATTIVITÀ DI MONITORAGGIO E CONTROLLO

La sorveglianza presso i siti nucleari viene effettuata da Arpa Piemonte sia attraverso la gestione di reti di monitoraggio radiologico ambientale, ordinarie e straordinarie, sia attraverso lo svolgimento di attività di controllo puntuale.

Reti locali di monitoraggio

Il monitoraggio radiologico ambientale è uno strumento che consente di valutare lo stato della contaminazione radioattiva dell'ambiente e conseguentemente di stimare la dose efficace alla popolazione, grandezza proporzionale al rischio indotto dall'esposizione alle radiazioni ionizzanti. Le misure di concentrazione effettuate sulle varie matrici campionate vengono pertanto utilizzate per calcolare la *dose* agli individui dei *gruppi di riferimento della popolazione*, tenendo conto delle abitudini alimentari e di vita.

In via generale si può distinguere tra due diverse tipologie: il monitoraggio ordinario ed il monitoraggio straordinario.

Il monitoraggio ordinario

Viene effettuato con il fine di segnalare tempestivamente l'insorgere di situazioni anomale e di fenomeni di accumulo di particolari radionuclidi rilasciati nell'ambiente in modo autorizzato. Un monitoraggio, per essere uno strumento efficace, deve essere pianificato sulla base delle indicazioni che emergono da uno studio preliminare. Questo studio, partendo, per ogni sito, dalle informazioni sulle modalità e sulla quantità di effluenti radioattivi scaricati, consente di individuare, con l'ausilio di opportuni modelli di diffusione, le *vie critiche* ed i *gruppi di riferimento*

della popolazione. Vengono così scelte le matrici ambientali ed alimentari da campionare, i punti di campionamento significativi e la frequenza di campionamento.

• Il monitoraggio straordinario

Viene effettuato in occasione di particolari attività o dopo il verificarsi di una situazione anomala, incidentale o di calamità naturale che interessi un sito nucleare. In questo caso il monitoraggio viene pianificato in funzione dell'accaduto e non ha più una funzione strettamente preventiva ma è mirato alla verifica delle eventuali conseguenze indotte sull'ambiente dall'evento in questione.

Attività di controllo

Vengono svolte, in collaborazione con ISPRA, le seguenti attività di controllo:

- la sorveglianza in occasione di attività particolari o di eventi anomali;
- il controllo degli scarichi di effluenti radioattivi liquidi di tutti gli impianti mediante il campionamento e l'analisi di un campione dai serbatoi di raccolta prima di ogni scarico;
- il controllo dei materiali allontanabili.

3 LE STRATEGIE DI CONTROLLO

Sono state applicate le strategie di controllo descritte nel documento *Strategie di monitoraggio e controllo dei siti nucleari* e disponibile sul sito <u>www.arpa.piemonte.it</u>.

Di seguito, per comodità di consultazione, vengono brevemente riassunte.

Livelli di riferimento

La normativa di riferimento (D. Lgs. 230/95 e ss.mm.ii.) pone dei valori limite sulla *dose efficace*, data dalla somma delle dosi efficaci ricevute per esposizione esterna e impegnate per inalazione o per ingestione a seguito dell'introduzione di radionuclidi verificatesi nel periodo di riferimento. Secondo i più recenti indirizzi nazionali ed internazionali il limite da considerare per l'esposizione a sorgenti di radiazioni artificiali è costituito dal *limite per la non rilevanza radiologica*, fissato in 10 microSv per anno solare, valore al di sotto del quale si può ritenere del tutto trascurabile l'impatto radiologico.

I limiti fissati dalla normativa non sono però direttamente confrontabili con i risultati analitici, che forniscono dei valori di concentrazione di attività, dal momento che si tratta di grandezze di natura diversa. Solo il D. Lgs. 15 febbraio 2016 n. 28 "Attuazione della direttiva 2013/51/EURATOM del Consiglio, del 22 ottobre 2013, che stabilisce i requisiti per la tutela della salute della popolazione relativamente alle sostanze radioattive presenti nelle acque destinate al consumo umano" – entrato in vigore il 22/03/2016 in sostituzione del D. Lgs. 2 febbraio 2001 n. 31 e s.m.i. "Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano" – definisce le caratteristiche radiometriche delle acque potabili.

In particolare il decreto fissa i valori per la concentrazione di Radon e di Tritio nelle acque potabili in 100 Bq/l ed il valore della *dose indicativa* in 0,10 mSv per anno solare, corrispondenti a 100 microSv per anno solare. Inoltre riporta i *valori di concentrazioni di attività derivate* per i principali radionuclidi di origine naturale ed artificiale e stabilisce che il calcolo della *dose indicativa* può essere effettuato attraverso le due strategie di seguito descritte.

- Strategia di screening basata sulla misura dell'attività Alfa totale e Beta totale.
 Il rispetto dei valori di screening per l'attività Alfa totale e Beta totale riportati in Tabella 2 generalmente garantisce il rispetto della dose indicativa. In caso contrario sono necessarie misure di approfondimento.
- Strategia di screening basata sull'analisi della concentrazione dei singoli nuclidi.
 Vengono preliminarmente determinati i radionuclidi da misurare in relazione alle possibili fonti di rilascio. Il calcolo della dose indicativa viene poi effettuato tenendo conto di tutti i contributi.

Pur continuando ad effettuare le misure di screening di attività Alfa totale e Beta totale allo scopo di evidenziare tempestivamente picchi di rilascio, si è scelto di utilizzare la strategia di cui al punto 2).

In via strettamente cautelativa lo stesso approccio viene utilizzato per l'acqua di falda superficiale. Il superamento dei *valori di screening* per l'attività Alfa totale e Beta totale non deve pertanto essere necessariamente interpretato come superamento del valore di *dose indicativa*.

Inoltre, visto lo specifico contesto che vede la presenza di impianti nucleari come possibile fonte di rilascio, si ritiene opportuno e cautelativo continuare ad utilizzare come livello operativo il *valore* soglia per la non rilevanza radiologica, ossia quel valore il cui rispetto garantisce il rispetto del limite per la non rilevanza radiologica, fissato in 10 microSv per anno solare.

Inoltre si è tenuto conto dei *valori di screening* fissati per alcune grandezze a livello internazionale (World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011) e comunitario (Raccomandazione 2000/473/Euratom).

Trattamento statistico dei dati

I valori di concentrazione dei radionuclidi artificiali rilevati nell'ambiente ed imputabili a rilasci degli impianti sono, allo stato attuale, molto inferiori ai livelli di riferimento adottati e questo pone il problema della loro corretta valutazione sia in termini analitici sia di attribuzione.

Pertanto sono stati messi a punto metodi di prova che assicurano *Limiti di rivelabilità* adeguati (Tabella 2) e sono stati adottati opportuni criteri di analisi statistica dei dati che consentano di evidenziare dati anomali rispetto alle serie storiche. Tali dati anomali possono essere indice di:

- rilasci che comportano livelli di contaminazione confrontabili con il fondo ambientale locale (per esempio nei suoli e nei sedimenti);
- incremento di fenomeni di rilascio in atto (per esempio il rilascio di contaminanti nella falda acquifera superficiale).

Disponendo di una adeguata serie storica di dati di misura, si è scelto di effettuare l'analisi statistica dei dati di misura utilizzando l'approccio ai controlli interni della qualità di un laboratorio analitico tramite carte di controllo.

In questo modo per ogni punto di campionamento, per ogni matrice e per ogni parametro è stato possibile definire un *Limite di azione*, valore della concentrazione di un determinato radionuclide al di sopra del quale è in atto un evento anomalo.

Questi limiti sono utilizzati come valore soglia per le concentrazioni di attività in quelle matrici che sono considerate indicatori ambientali e non vengono utilizzate per il calcolo della dose all'individuo di riferimento della popolazione.

4 ATTIVITÀ SVOLTE DALL' IMPIANTO NELL'ANNO 2016

Nel corso del 2016 sono continuate le attività di decommissioning dell'impianto. Tra queste si segnalano in particolare:

- la gestione dei rifiuti radioattivi solidi nell'edificio denominato BLD11 adibito a stazione di buffer provvisorio – dove alla fine del 2016 erano presenti 893 fusti da 220 litri contenenti rifiuti radioattivi, dei quali 503 sono stati prodotti durante le attività di decommissioning e 390 durante l'esercizio pregresso dell'impianto;
- il monitoraggio finale dei materiali ai fini del loro allontamento dal sito privi di vincoli radiologici.

Nel corso dell'anno 2016 l'impianto ex FN-SO.G.I.N di Bosco Marengo (AL) ha effettuato 2 scarichi di effluenti radioattivi liquidi. Tali scarichi sono stati convogliati in una vasca di accumulo che è stata svuotata nel Rio Lovassina in una sola occasione nel corso dell'anno 2016.

5 LE RETI DI MONITORAGGIO

Nell'anno 2016 la rete di monitoraggio ordinario del sito di Bosco Marengo è rimasta invariata poiché non sono intervenuti cambiamenti sostanziali dello scenario globale.

La rete è stata a suo tempo predisposta con apposito studio radioecologico che ha permesso di individuare le matrici ambientali e alimentari considerate come indicatori locali, la frequenza minima di campionamento, le determinazioni analitiche da effettuare ed i valori di riferimento da adottare di cui al Paragrafo 3.

Tutti i campionamenti sono effettuati secondo precise modalità – definite in una procedura interna – in modo da garantire la significatività e la riproducibilità dei dati misurati.

Di seguito sono riportate la Tabella 1 con il piano di monitoraggio ordinario e la cartina (Figura 1) con la dislocazione dei punti di campionamento della rete di monitoraggio ordinario.

Tabella 1 Piano di monitoraggio ordinario del sito nucleare di Bosco Marengo.

Matrice	Punti di campionamento	Frequenza di campionamento
Acqua potabile	BQ01, BQ02, BQ03, BQ04	Semestrale
Acqua di falda superficiale	BP01, BP02, BP03, BP04, BP05, BP06	Semestrale
Acqua superficiale	BF01, BF02, BF03	Semestrale
Sedimenti fluviali	BF01, BF02, BF03	Semestrale
Cereali di coltivazione locale	BC01, BC02, BC03, BC04	Annuale
Suolo	BS01, BS02, BS03, BS04	Annuale
Suolo coltivato	BC01, BC02, BC03, BC04	Annuale
Particolato atmosferico	BA01	Continua

BC03 BF02 BP02 **G BP06** BS01 BAC **BS03 BS02 BC02 BP06** BS01 **BA01** FN-SO.G.I.N.

Figura 1 Distribuzione dei punti di campionamento del piano di monitoraggio per il sito nucleare di Bosco Marengo.

6 METODOLOGIA DI MISURA

I metodi utilizzati per l'esecuzione delle analisi – contenuti nel "Catalogo prove" di Arpa Piemonte e riportati in Allegato 2 – sono stati scelti per permettere la determinazione quantitativa dei contaminanti maggiormente rilevanti dal punto di vista radioprotezionistico rispetto alla natura degli impianti oggetto del monitoraggio. Sullo stesso campione possono essere eseguite più determinazioni, applicando metodi diversi in funzione dei nuclidi di interesse. Tra questi:

ARPA Ente di diritto pubblico - Dipartimento Tematico Radiazioni

Via Jervis, 30 - 10015 Ivrea (TO) - Tel. 012564511 - fax 0125645358 - Codice Fiscale — Partita IVA 07176380017 - E-mail: radiazioni@arpa.piemonte.it Struttura Semplice Siti Nucleari

Via Trino, 89 – 13100 Vercelli – Tel. 0161269884 – fax 0161269850 - E-mail: siti.nucleari@arpa.piemonte.it

- la determinazione dell'attività *Alfa totale* e *Beta totale* permette la quantificazione dell'attività imputabile a tutti i radionuclidi alfa emettitori e beta emettitori presenti nel campione, senza consentirne l'analisi qualitativa. Rappresenta un utile strumento per un confronto diretto con i *valori di screening* fissati per la contaminazione del particolato atmosferico;
- la determinazione dell'attività degli attinidi totali rappresenta un utile strumento per un confronto diretto con i valori di screening fissati per la contaminazione dell'acqua destinata al consumo umano;
- i *metodi radiochimici* prevedono la separazione dei singoli radionuclidi alfa emettitori (uranio) e la loro successiva determinazione quantitativa; si tratta di analisi estremamente laboriose che non sono applicabili in larga scala.

Nel grafico di Figura 2 è riportato il numero di campioni – suddivisi per matrice – prelevati ed analizzati nel corso del 2016 nell'ambito della rete di monitoraggio radiologico ambientale del sito nucleare di Bosco Marengo.

Nel grafico di Figura 3 è invece riportata la distribuzione percentuale delle tipologie di analisi.

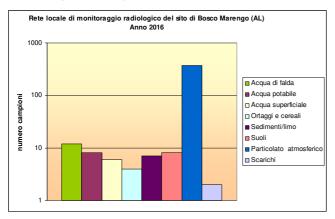
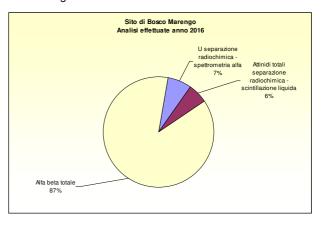



Figura 3 Analisi effettuate nell'anno 2016.

I risultati delle analisi vengono espressi come concentrazioni di attività per il singolo radionuclide riferite alla massa, al volume o alla superficie della matrice considerata (Bq/kg, Bq/l, Bq/m³ e Bq/m² rispettivamente). La sensibilità della misura viene indicata dal *Limite di Rivelabilità*: tale grandezza rappresenta la minima quantità di radioattività che la metodica analitica è in grado di rivelare. Nel caso in cui non si riveli contaminazione da parte di un certo radionuclide verrà comunque considerato il *Limite di Rivelabilità* come limite superiore per la concentrazione del radionuclide stesso (nelle tabelle si vedrà il simbolo <).

La sensibilità delle misure deve essere tale da garantire dei *Limiti di Rivelabilità* sempre inferiori ai valori soglia per la non rilevanza radiologica e ai *valori di screening*, come riportato in Tabella 2.

Tabella 2 Valori di screening, valori soglia per la non rilevanza radiologica e sensibilità di misura, espresse come Limiti di rivelabilità (ordini di grandezza).

Matrice	Parametro	Limite di rivelabilità Bq/kg, Bq/l, Bq/m³	Valore soglia per la non rilevanza radiologica Bq/kg, Bq/l, Bq/m³	Valore di screening Bq/kg, Bq/l, Bq/m³	Fonte
	α totale	0,1	-	0,1	D. Lgs. 28/2016
	β totale	0,2	-	0,5	D. Lgs. 28/2016
Acqua potabile	Attinidi totali	0,02	-	0,74	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
	U-234	0,001	0,11	-	
	U-235	0,001	0,11	-	
	U-238	0,001	0,11	-	
	α totale	0,1	-	0,1	D. Lgs. 28/2016
	β totale	0,2	-	0,5	D. Lgs. 28/2016
Acqua di falda superficiale	Attinidi totali	0,02	-	0,74	World Health Organization, Guidelines for Drinking-water Quality. Fourth Edition, 2011
	U-234	0,001	0,11	-	
	U-235	0,001	0,11	-	
	U-238	0,001	0,11	-	
A 0 00 1 0	α totale	0,1	-	-	
Acqua superficiale	β totale	0,2	-	0,6	Raccomandazione 2000/473/Euratom
Superficiale	Attinidi totali	0,02	-	-	
	U-234	0,01	1,5	-	
Cereali	U-235	0,01	1,6	-	
	U-238	0,01	1,6	-	
Particolato	α totale ritardata	0,00005	-	-	
atmosferico	β totale ritardata	0,0005	-	0,005	Raccomandazione 2000/473/Euratom
Sedimenti	U-234	0,4	-	-	
fluviali	U-235	0,4	-	-	
IIUVIAII	U-238	0,4	-	-	
Suolo	U-234	0,4	-	-	
indisturbato	U-235	0,4	-	-	
Indisturbato	U-238	0,4	-	-	
	U-234	0,4	-	-	
Suolo coltivato	U-235	0,4	-	-	
	U-238	0,4	-	-	

Al fine di garantire la qualità dei dati erogati il laboratorio della struttura Siti Nucleari:

- è accreditato UNI CEI EN ISO/IEC 17025 (certificato ACCREDIA n. 0203) per i principali metodi di prova (ALLEGATO 2);
- partecipa con cadenza annuale a circuiti di interconfronto nazionali ed internazionali (EC, IAEA ed altri).

L'accreditamento testimonia la competenza tecnica del Laboratorio e la conformità del sistema di gestione alla norma UNI CEI EN ISO/IEC 17025 ed a qualsiasi altro criterio prescritto dall'Ente di accreditamento.

7 STRUMENTAZIONE UTILIZZATA

Per l'esecuzione delle misure radiometriche è stata utilizzata la seguente strumentazione:

- Catene spettrometriche alfa con rivelatori al silicio a barriera superficiale e software di elaborazione ORTEC "Alpha Vision";
- contatori proporzionali a flusso di gas Berthold mod. LB 770;
- contatore a scintillazione liquida Perkin Elmer mod. Ultra low level Quantulus 1220.

8 ATTIVITÀ DI MONITORAGGIO

8.1. Monitoraggio ambientale ordinario – risultati delle misure

In questa sezione sono riportati in forma sintetica i risultati delle misure insieme ad alcuni grafici con gli andamenti storici delle concentrazioni dei radionuclidi di interesse nelle principali matrici alimentari ed ambientali, mentre per il dettaglio dei dati analitici si rimanda alle tabelle dell'Allegato 1. Per agevolare la comprensione dei risultati delle misure eseguite, nei grafici sono riportate le linee corrispondenti ai livelli operativi di volta in volta adottati (si veda il Paragrafo 3): questo consente di valutare facilmente se i valori di concentrazione sono accettabili e quanto si discostano dai valori limite.

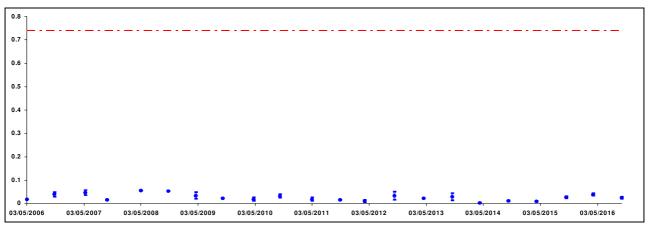
Nei grafici il punto rappresenta il limite di rivelabilità per il radionuclide rappresentato, mentre la barra verticale indica la presenza di contaminante con incertezza pari all'estensione della barra. Si segnala altresì che tutti i risultati delle misure sono liberamente consultabili, in modo interattivo, nella sezione Radiazioni del Geoportale di Arpa Piemonte.

Come già introdotto al Paragrafo 2, il monitoraggio radiologico ambientale consente, in ultima analisi, di stimare la dose efficace alla popolazione, grandezza proporzionale al rischio indotto dall'esposizione alle radiazioni ionizzanti. Il calcolo della dose efficace deve necessariamente tenere conto delle tre possibili vie di esposizione: *ingestione*, *inalazione* ed *irraggiamento*. Per questo motivo i risultati delle misure sono di seguito riportati per gruppi di matrici che contribuiscono ad una determinata via di esposizione.

Via di esposizione: ingestione

Acqua potabile

- Fa parte integrante della dieta.
- Consumo medio pro capite 548 l/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 1.
- Presenza di uranio di origine naturale.
- Contributo alla dose 1,37microSv/anno.


Nei campioni di acqua potabile distribuita dagli acquedotti di Bosco Marengo (BQ01), Frugarolo (BQ02), Quattro Cascine (BQ03) e Pozzolo Formigaro (BQ04), tutti i valori di concentrazione dell'attività degli Attinidi totali, dell'attività Alfa totale e dell'attività Beta totale si sono sempre mantenuti nettamente al di sotto dei *valori di screening*, consentendo di escludere la presenza di uranio in quantità anomale.

I risultati delle misure di uranio in spettrometria alfa sono confrontabili con le serie storiche degli anni precedenti e tutti i valori di uranio si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica*.

Nel grafico di Figura 4 è riportato, a titolo esemplificativo, l'andamento della concentrazione degli Attinidi totali nell'acqua potabile distribuita dall'acquedotto di Bosco Marengo (BQ01). La linea orizzontale rappresenta il *valore di screening* fissato da World Health Organization per l'uranio totale.

Figura 4 Andamento della concentrazione degli Attinidi totali nell'acqua potabile prelevata nel punto BQ01 (Bq/l). La linea orizzontale rappresenta il *valore di screening* fissato da World Health Organization per l'uranio totale.

Nei grafici di Figura 5 e Figura 6 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nell'acqua potabile distribuita dall'acquedotto di Bosco Marengo (BQ01). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Figura 5 Andamento della concentrazione di U-234 nell'acqua potabile prelevata nel punto BQ01 (Bq/l). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

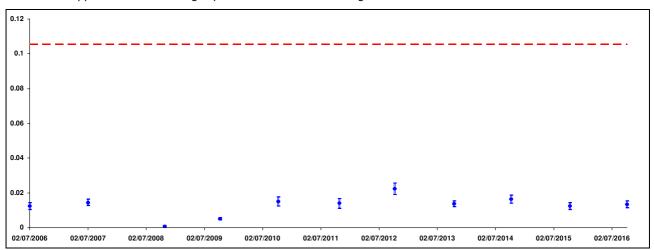
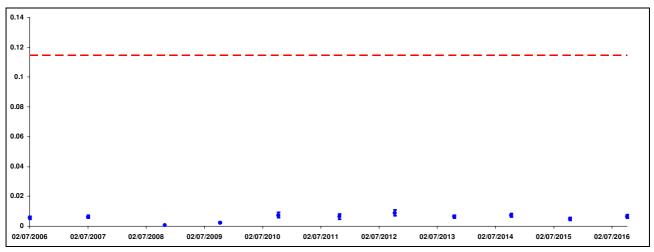
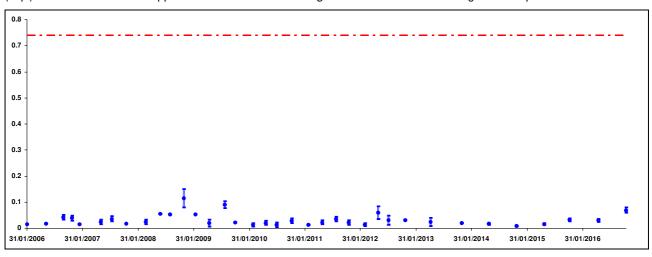



Figura 6 Andamento della concentrazione di U-238 nell'acqua potabile prelevata nel punto BQ01 (Bq/l). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Acqua di falda superficiale

- Può far parte della dieta ed essere utilizzata a scopo irriguo.
- Consumo medio pro capite 548 l/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 2.
- Presenza di uranio di origine naturale.
- Contributo alla dose 2,25 microSv/anno.


Nell'acqua di falda superficiale campionata nei pozzi privati BP01, BP02, BP03, BP04, BP05 e BP06 tutti i valori di concentrazione dell'attività degli Attinidi totali, dell'attività Alfa totale e dell'attività Beta totale si sono sempre mantenuti nettamente al di sotto dei *valori di screening*, consentendo di escludere la presenza di uranio in quantità anomale.

I risultati delle misure di uranio in spettrometria alfa sono confrontabili con le serie storiche degli anni precedenti e tutti i valori di uranio si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica*.

Nel grafico di Figura 7 è riportato, a titolo esemplificativo, l'andamento della concentrazione degli Attinidi totali nell'acqua di falda superficiale prelevata nel pozzo privato BP01. La linea orizzontale rappresenta il valore di screening fissato da World Health Organization per l'uranio totale.

Figura 7 Andamento della concentrazione degli Attinidi totali nell'acqua di falda superficiale prelevata nel punto BP01 (Bq/l). La linea orizzontale rappresenta il valore di screening fissato da World Health Organization per l'uranio totale.

Nei grafici di Figura 8 e Figura 9 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nell'acqua di falda superficiale prelevata nel pozzo privato BP01. La linea orizzontale rappresenta il valore soglia per la non rilevanza radiologica.

Figura 8 Andamento della concentrazione di U-234 nell'acqua di falda superficiale prelevata nel punto BP01 (Bg/l). La linea orizzontale rappresenta il valore soglia per la non rilevanza radiologica.

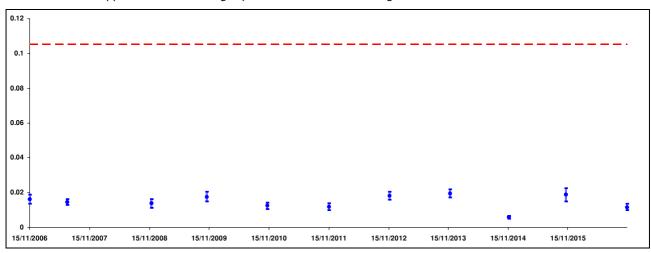
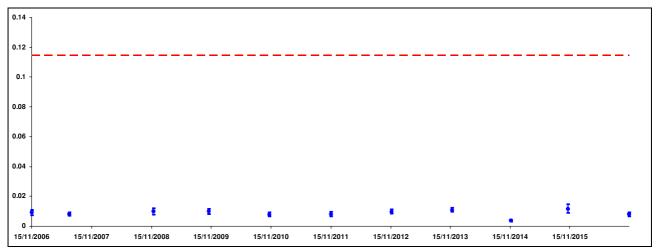



Figura 9 Andamento della concentrazione di U-238 nell'acqua di falda superficiale prelevata nel punto BP01 (Bq/l). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Prodotti di coltivazione

- I cereali fanno parte integrante della dieta.
- Consumo medio pro capite 110 kg/anno per gli adulti (CEVaD/2010).
- Dettaglio dei risultati delle misure in Tabella A 3.
- Presenza di uranio di origine naturale.
- Contributo alla dose 0,11 microSv/anno.

Nei cereali di produzione locale campionati nei punti BC01, BC02, BC03 e BC04 i risultati delle misure di uranio in spettrometria alfa sono confrontabili con le serie storiche degli anni precedenti e tutti i valori di uranio si sono sempre mantenuti nettamente al di sotto dei *valori soglia per la non rilevanza radiologica*.

Nei grafici di Figura 10 e Figura 11 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nei cereali prelevati nel punto BC01. La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Figura 10 Andamento della concentrazione di U-234 nei cereali prelevati nel punto BC01 (Bq/kg). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

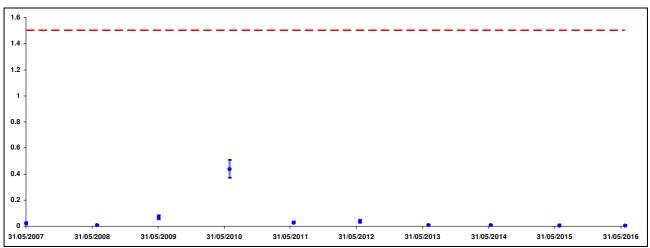
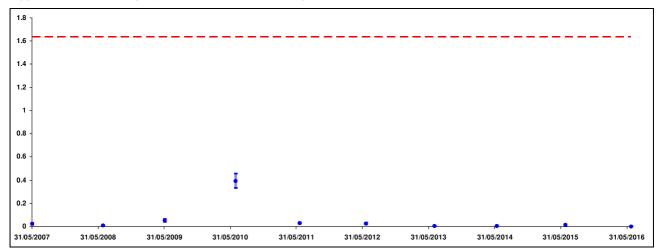



Figura 11 Andamento della concentrazione di U-238 nei cereali prelevati nel punto BC01 (Bq/kg). La linea orizzontale rappresenta il *valore soglia per la non rilevanza radiologica*.

Indicatori ambientali

Suolo

- E' un indicatore ambientale utile per valutare eventuali ricadute al suolo.
- Dettaglio dei risultati delle misure in Tabella A 4.
- Presenza di uranio di origine naturale.
- Nel corso del 2016 non si è evidenziato un andamento anomalo rispetto alla serie storica.

Nel suolo indisturbato campionato nei punti BS01, BS02, BS03 e BS04 i risultati delle misure di uranio in spettrometria alfa sono confrontabili con le serie storiche degli anni precedenti. Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti *limiti di azione*.

Nei grafici di Figura 12 e Figura 13 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nel suolo indisturbato prelevato nel punto BS01. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

Figura 12 Andamento della concentrazione di U-234 nel suolo indisturbato prelevato nel punto BS01 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

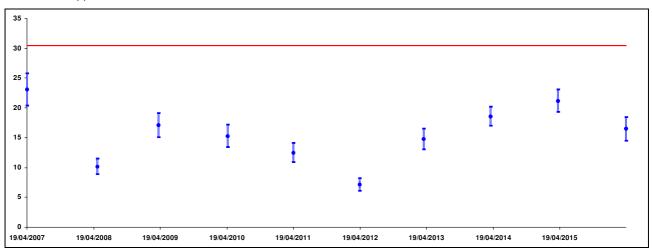
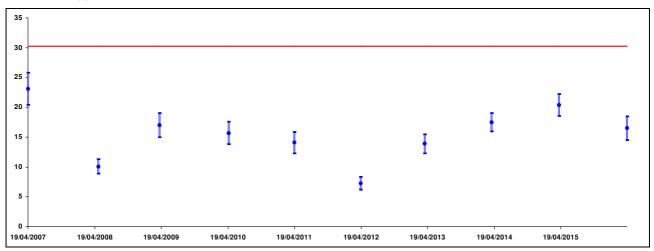



Figura 13 Andamento della concentrazione di U-238 nel suolo indisturbato prelevato nel punto BS01 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

Suolo coltivato

è

- La contaminazione radioattiva uniformemente distribuita.
- E' un indicatore ambientale utile per valutare eventuali ricadute al suolo.
- Dettaglio dei risultati delle misure in Tabella A 5.
- Presenza di uranio di origine naturale.
- Nel corso del 2016 nel punto BC02 le concentrazioni di U-234 e di U-238 hanno superato il limite di azione. La contaminazione osservata è attribuibile alla radioattività naturale e non direttamente riconducibile alle attività dell'impianto.

Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti *limiti di azione*. Nel suolo coltivato campionato nel corso del 2016 nei punti BC01, BC03 e BC04 i risultati delle misure di uranio in spettrometria alfa sono confrontabili con le serie storiche degli anni precedenti. Solo nel punto BS02 si è evidenziato un andamento anomalo rispetto alla serie storica e le concentrazioni di U-234 e di U-238 hanno superato il *limite di azione*. Tuttavia non sono state evidenziate alterazioni nei rapporti isotopici rispetto all'uranio naturale: pertanto la contaminazione osservata è attribuibile alla radioattività naturale e non direttamente riconducibile alle attività dell'impianto.

Nei grafici di Figura 14 e Figura 15 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nel suolo coltivato prelevato nel punto BC02. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

Figura 14 Andamento della concentrazione di U-234 nel suolo coltivato prelevato nel punto BC02 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

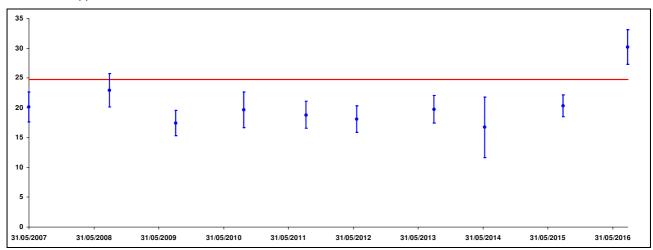
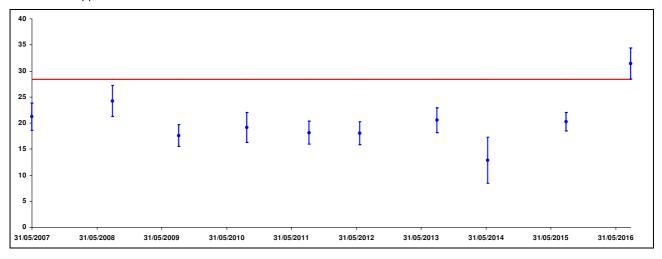



Figura 15 Andamento della concentrazione di U-238 nel suolo coltivato prelevato nel punto BC02 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

Acqua superficiale

- Costituisce un indicatore ambientale utile per evidenziare eventuali accumuli.
- Dettaglio dei risultati delle misure in Tabella A 6.
- Presenza di uranio di origine naturale.
- Nel corso del 2016 non si è evidenziato un andamento anomalo rispetto alla serie storica.

L'acqua superficiale del Rio Lovassina campionata a monte (BF01) ed a valle (BF02, BF03) dello scarico dell'impianto costituisce un indicatore ambientale utile per evidenziare eventuali accumuli. Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti *limiti di azione*, ad eccezione della concentrazione di attività Beta totale per cui è stato definito il *valore di screening* secondo la Raccomandazione 2000/473/Euratom. Nel corso del 2016 non si è evidenziato un andamento anomalo rispetto alla serie storica,

Nei grafici di Figura 16 e Figura 17 sono riportati a titolo esemplificativo gli andamenti della concentrazione delle attività Beta totale a monte (BF01) ed a valle (BF02) dello scarico dell'impianto. La linea orizzontale rappresenta il *valore di screening* secondo la Raccomandazione 2000/473/Euratom. Nel corso del 2016 la concentrazione di attività Beta totale non ha presentato superamenti. Si ricorda che nel 2015 si era osservato il superamento del valore di screening sia a monte sia a valle dello scarico dell'impianto, ad indicare che il fenomeno non era riconducibile alle attività dell'impianto stesso.

Figura 16 Andamento della concentrazione Beta totale nell'acqua superficiale prelevata a monte dello scarico dell'impianto nel punto BF01 (Bq/I). La linea orizzontale rappresenta il *valore di screening* secondo la Raccomandazione 2000/473/Euratom.

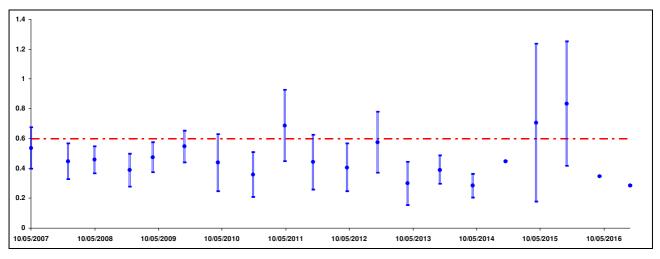
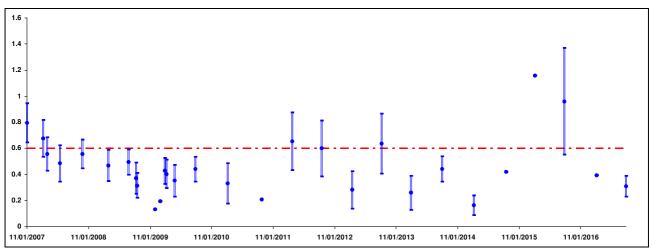



Figura 17 Andamento della concentrazione Beta totale nell'acqua superficiale prelevata a valle dello scarico dell'impianto nel punto BF02 (Bq/l). La linea orizzontale rappresenta il valore di screening secondo la Raccomandazione 2000/473/Euratom.

Sedimenti fluviali

- Costituiscono un indicatore ambientale utile per evidenziare eventuali accumuli.
- Dettaglio dei risultati delle misure in Tabella A 7.
- Presenza di uranio di origine naturale e tracce di uranio arricchito immediatamente a valle dello scarico dell'impianto.
- Nel corso del 2016 non si è evidenziato un andamento anomalo rispetto alla serie storica.

I sedimenti del Rio Lovassina campionati a monte (BF01) ed a valle (BF02, BF03) dello scarico dell'impianto costituiscono un indicatore ambientale utile per evidenziare eventuali accumuli. Dal momento che per questa matrice non sono definibili *valori soglia per la non rilevanza radiologica* la valutazione dei risultati analitici è effettuata da un punto di vista statistico utilizzando i pertinenti *limiti di azione*.

Nei grafici di Figura 18 e Figura 19 sono riportati, a titolo esemplificativo, gli andamenti delle concentrazioni di U-234 e U-238 nei sedimenti prelevati nel punto BF02, posto immediatamente a valle dello scarico dell'impianto. La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

Nel corso del 2016 non ci sono stati superamenti del limite di azione.

Si ricorda che nel corso del 2015 si era osservato il superamento del *limite di azione* – evidenziato in Figura 18 – per la concentrazione di U-234 e contemporaneamente una alterazione nei rapporti isotopici rispetto all'uranio naturale: la contaminazione da uranio arricchito osservata era quindi riconducibile alle attività dell'impianto. Tale episodio è risultato quindi del tutto localizzato e transitorio ad evidenziare l'assenza di fenomeni di accumulo.

Figura 18 Andamento della concentrazione di U-234 nei sedimenti prelevati nel punto BF02 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

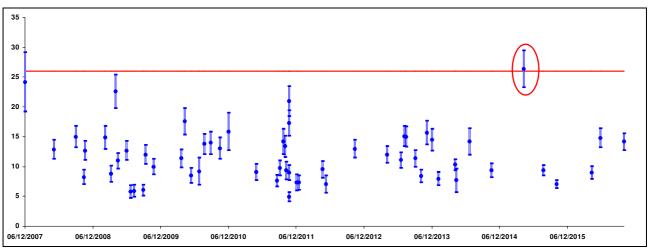
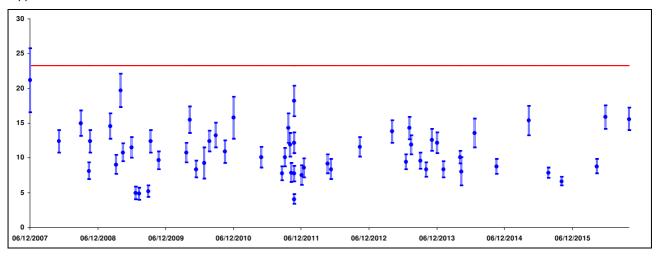
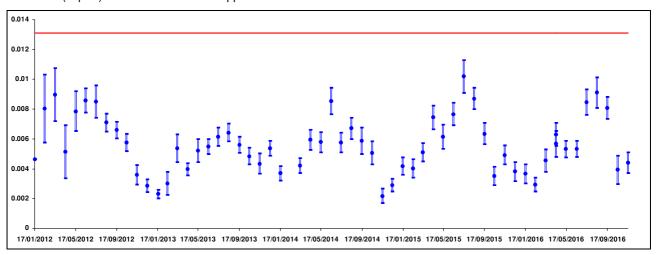



Figura 19 Andamento della concentrazione di U-238 nei sedimenti prelevati nel punto BF02 (Bq/kg). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.


Particolato atmosferico

- Il punto di campionamento è posto all'interno dell'impianto FN-SO.G.I.N., per cui i dati relativi non possono essere utilizzati per valutazioni di dose alla popolazione.
- Dettaglio dei risultati delle misure in Tabella A 8 e Tabella A 9.
- Nel corso del 2016 non è mai stata rilevata la presenza di radionuclidi di origine artificiale.

Il particolato atmosferico è campionato in continuo in un punto posto all'interno dell'impianto FN-SO.G.I.N. (BA01) con la finalità di controllare gli effluenti aeriformi dell'impianto stesso: i dati relativi non possono pertanto essere utilizzati per valutazioni di dose alla popolazione. Le concentrazioni di attività Alfa totale e Beta totale ritardate sono imputabili alla presenza di radionuclidi di origine naturale a vita non breve o cosmogenici, come Be-7 (Figura 20).

Figura 20 Andamento della concentrazione di Be-7 nel particolato atmosferico campionato presso l'impianto FN-SO.G.I.N. (Bq/m³). La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati.

Nel grafico di Figura 21 è riportato l'andamento delle misure di screening di attività Alfa totale sui filtri giornalieri. La linea orizzontale rappresenta il limite di azione basato sulla serie storica dei dati. Nel grafico di Figura 22 è riportato l'andamento delle misure di screening di attività Beta totale sui filtri giornalieri. La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom. Nel corso dei mesi di gennaio, settembre e dicembre si è osservato un incremento delle concentrazioni di attività Alfa totale e Beta totale correlabili all'aumentato inquinamento atmosferico causato dalla prolungata assenza di precipitazioni ed osservato anche negli altri punti di campionamento, in particolare presso la sede Arpa di Vercelli (Figura 23 e Figura 24) ove si sono osservati anche sporadici superamenti della serie storica per la concentrazione di attività Alfa totale ed un isolato superamento del livello notificabile secondo la Raccomandazione 2000/473/Euratom per la concentrazione di attività Beta totale.

Nel corso dell'anno non è mai stato riscontrato il superamento dei *valori soglia per la non rilevanza radiologica* per radionuclidi di origine artificiale – come risulta dalle misure di spettrometria gamma – e non si è evidenziato un andamento anomalo rispetto alla serie storica.

Figura 21 Andamento delle misure di screening di attività Alfa totale sui campioni di particolato atmosferico prelevati presso l'impianto FN-SO.G.I.N. (Bq/m³). La linea orizzontale rappresenta il *limite di azione* basato sulla serie storica dei dati.

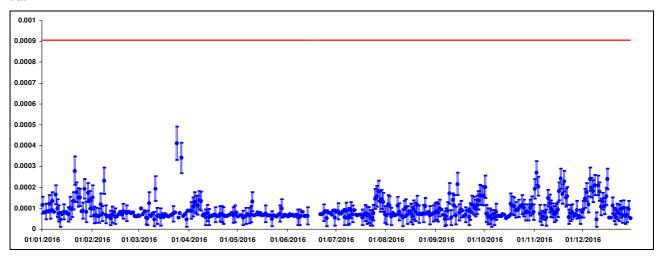


Figura 22 Andamento delle misure di screening di attività Beta totale sui campioni di particolato atmosferico prelevati presso l'impianto FN-SO.G.I.N. (Bq/m³). La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom.

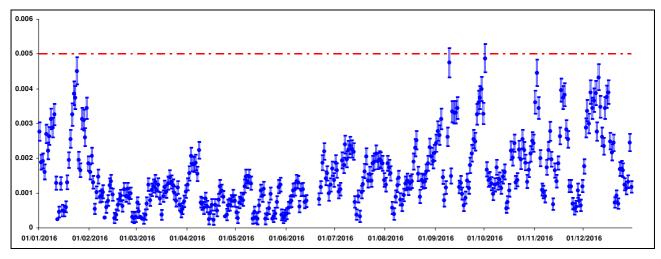


Figura 23 Andamento delle misure di screening di attività Alfa totale nel particolato atmosferico campionato presso la sede Arpa di Vercelli (Bq/m³). La linea orizzontale rappresenta il limite di azione per l'attività Alfa totale.

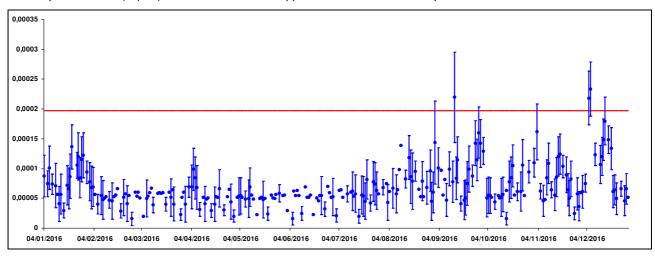
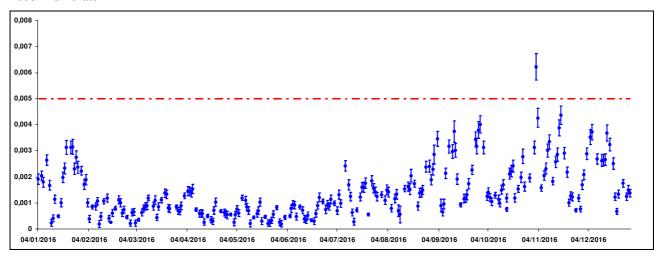



Figura 24 Andamento delle misure di screening di attività Beta totale nel particolato atmosferico campionato presso la sede Arpa di Vercelli (Bq/m³). La linea orizzontale rappresenta il livello notificabile secondo la Raccomandazione 2000/473/Euratom.

9 ATTIVITÀ DI CONTROLLO

9.1. Controllo degli scarichi di effluenti radioattivi

L'impianto rilascia nell'ambiente effluenti radioattivi liquidi ed aeriformi nel rispetto di precise prescrizioni assegnate in sede autorizzativa.

Arpa Piemonte, in accordo con ISPRA e con gli Esercenti, effettua controlli sistematici sui campioni di effluenti liquidi – al fine di verificare il rispetto delle formule di scarico – e indagini ambientali specifiche in occasione di ogni scarico.

In Tabella 3 è riassunto l'impegno della formula di scarico per gli effluenti radioattivi liquidi valutato in funzione delle analisi eseguite sui campioni prelevati prima di ogni scarico, riportando il confronto con gli anni precedenti. L'arricchimento medio degli scarichi è pari a circa il 2%. Le valutazioni sono effettuate sulla base della la formula di scarico valida per l'esercizio dell'impianto sino al 2008 e a partire dal 2009 secondo la formula di scarico valida per la disattivazione dell'impianto, che garantisce il rispetto del limite di non rilevanza radiologia di 10 microSv/anno.

Tabella 3 Impegno delle formule di scarico in acqua per effluenti radioattivi liquidi.

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Impegno formula di scarico	1,10%	1,45%	1,44%	0,60%	7,00%	7,19%	10,45%	1,53%	20,64%	6,58%	3,46%	0,28%

Dopo ogni scarico sono stati prelevati campioni di sedimenti del Rio Lovassina in prossimità del punto di immissione della condotta di scarico (BF02).

Come si evidenzia dai grafici di Figura 18 e Figura 19 nel corso del 2015 si sono osservate tracce di uranio arricchito immediatamente a valle dello scarico dell'impianto ma tale episodio è risultato del tutto localizzato e transitorio e non si sono riscontrati fenomeni di accumulo nei sedimenti del Rio Lovassina.

Per quanto riguarda gli effluenti aeriformi il monitoraggio ambientale viene effettuato tramite la postazione di campionamento di particolato atmosferico (per i risultati si veda il Paragrafo precedente).

9.2. Controllo dei materiali allontanabili dall'impianto

Il decomissioning degli impianti nucleari implica la produzione e la gestione di notevoli quantità di materiali solidi parte dei quali – per la loro provenienza all'interno dell'area o per i trattamenti di decontaminazione subiti – presenta un'attività inferiore al livello di allontanamento assegnato dalla autorità nazionale di controllo. Questi materiali possono essere dichiarati esenti da vincoli radiologici e quindi allontanati come materiali non soggetti alle disposizioni di legge in materia di radioprotezione. Prima del loro allontanamento Arpa Piemonte, in attuazione del "Protocollo operativo tra Arpa Piemonte e Apat" (ora ISPRA) del 15/06/2005, rinnovato nel 2015, effettua controlli indipendenti su ogni lotto di materiali.

Nel corso del 2016 sono stati effettuati i controlli su un lotto di materiale metallico, che è stato successivamente allontanato. Tali controlli hanno confermato che i livelli di concentrazione di attività di U-totale sono al di sotto dei livelli di allontanamento definiti nelle Prescrizioni per la Disattivazione allegate al DM 27/11/2008 di autorizzazione alla disattivazione dell'impianto.

Le relazioni tecniche contenenti il dettaglio dei risultati delle misure eseguite per il controllo dei materiali rilasciabili sono disponibili sul sito www.arpa.piemonte.it nella sezione dedicata ai Siti Nucleari.

10 VALUTAZIONI DOSIMETRICHE

Sulla base dei dati riportati nei paragrafi precedenti è possibile calcolare la *dose efficace* per gli *individui di riferimento* della popolazione. Pur assumendo come ipotesi estremamente cautelativa che le concentrazioni di uranio misurate siano imputabili esclusivamente alle attività dell'impianto, risulta ampiamente rispettato il limite di non rilevanza radiologica di 10 microSv/anno. In Tabella 4 è riportata la stima della *dose efficace* agli *individui di riferimento* della popolazione per l'anno 2016.

Sono stati considerati i contributi dei radionuclidi di riferimento, anche se al di sotto dei Limiti di rivelabilità. Per i valori inferiori al *Limite di rivelabilità* si è assunta una distribuzione rettangolare tra zero ed il *Limite di rivelabilità* stesso: in questo modo anche se non è stata rilevata la presenza di uno dei radionuclidi di riferimento il suo contributo alla dose non sarà zero. Si sottolinea che questo approccio, notevolmente cautelativo, può portare all'apparente paradosso di matrici in cui non è mai stata rilevata la presenza di radionuclidi che forniscono, però, un contributo alla dose non nullo.

Le valutazioni sopra riportate permettono di dimostrare l'adeguatezza delle strategie di controllo adottate.

Tabella 4 Stima della dose efficace alla popolazione – anno 2016.

Via critica	Matrice	Dose microSv/anno
Ingestione	Acqua potabile	1,37
	Acqua di falda superficiale	2,25
	Prodotti di coltivazione	0,11
Inalazione	-	-
Irraggiamento	-	-
Totale		3,73
Limite non rilevanza radiologica		10

In Figura 25 sono rappresentati i contributi percentuali alla dose efficace.

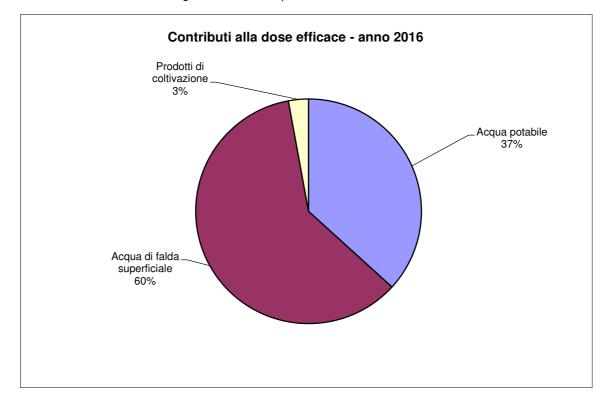


Figura 25 Contributi percentuali alla dose efficace.

Per quanto riguarda la tossicità chimica, con considerazioni analoghe è possibile valutare le concentrazioni medie di uranio nell'acqua potabile ed il rateo di introduzione medio, per le stesse vie critiche considerate per le valutazioni radioprotezionistiche. Anche in questo caso sono rispettati i limiti indicati da World Health Organization per l'uranio totale.

11 VALUTAZIONI CONCLUSIVE

I dati relativi alle misure effettuate nell'anno 2016 nell'ambito del programma ordinario hanno confermato l'assenza di contaminazioni ambientali imputabili alle attività svolte dall'impianto. Nel corso dei mesi di gennaio, settembre e dicembre si è osservato un generale incremento della

concentrazioni di attività Alfa totale e Beta totale nel particolato atmosferico correlabile all'aumentato inquinamento atmosferico causato dalla prolungata assenza di precipitazioni ed osservato anche negli altri punti di campionamento.

Il calcolo della *dose efficace* agli *individui di riferimento* della popolazione ha confermato che è stato rispettato il *limite di non rilevanza radiologica* di 10 microSv/anno, come suggerito dal rispetto dei livelli di riferimento adottati.

ALLEGATO 1 - Risultati delle misure

Tabella A 1 Risultati delle misure sui campioni di acqua potabile (Bq/l).

Punto	Campione	Data	Alfa totale	Beta totale	Attinidi totali	U-234	U-235	U-238
BQ01	16/018610	06/04/2016	0,0250 ± 0.0105	< 0,0925	0,0385 ± 0,0060	=	-	=
BQ01	16/051563	04/10/2016	< 0,0200	< 0,110	0,0246 ± 0,0051	0,0132 ± 0,0019	< 0,000712	0,00667 ± 0,00123
BQ02	16/018612	06/04/2016	< 0,0425	< 0,186	0,0409 ± 0,0061	-	-	-
BQ02	16/051566	04/10/2016	< 0,0176	< 0,0972	0,0195 ± 0,0036	0,0156 ± 0,0030	< 0,00128	0,00785 ± 0,00195
BQ03	16/018595	06/04/2016	< 0,0139	< 0,0895	< 0,00495	-	-	-
BQ03	16/051575	04/10/2016	< 0,0183	< 0,101	0,0191 ± 0,0034	0,00125 ± 0,00052	< 0,000654	0,000508 ± 0,000423
BQ04	16/018597	06/04/2016	< 0,0157	< 0,088	0,0172 ± 0,0037	-	-	-
BQ04	16/051581	04/10/2016	< 0,0197	< 0,108	0,00959 ± 0,00356	0,00728 ± 0,00138	0,000566 ± 0,000403	0,00549 ± 0,00119

Tabella A 2 Risultati delle misure sui campioni di acqua di falda superficiale (Bq/l).

Punto	Campione	Data	Alfa totale		Beta totale	Attinidi to	otali	U-234	U-23	5	U-23	8
BP01	16/025907	13/05/2016	0,0211 ± 0,0125	<	0,141	$0,0306 \pm$	0,0052	-	-		-	
BP01	16/058406	09/11/2016	< 0,0659	<	0,403	$0,0693 \pm$	0,0105	0,0117 ± 0,0018	< 0,000788		0,00795 ±	0,00146
BP02	16/025908	13/05/2016	0,0247 ± 0,0128	<	0,117	0,0246 ±	0,0044	-	-		-	
BP02	16/060502	28/11/2016	0,0327 ± 0,0124		0,103 ± 0,058	0,0402 ±	0,0058	0,0166 ± 0,0019	0,000273 ±	0,000203	0,00839 ±	0,00113
BP03	16/025909	13/05/2016	< 0,0187	<	0,121	0,0188 ±	0,0038	-	-		-	
BP03	16/058407	09/11/2016	< 0,0409	< 0	,0195	0,0137 ±	0,0039	0,0145 ± 0,0017	0,000378 ±	0,000247	0,0097 ±	0,00123
BP04	16/025910	13/05/2016	0,0181 ± 0,0117	<	0,116	0,0226 ±	0,0043	-	-		-	
BP04	16/058408	09/11/2016	< 0,0381	<	0,155	$0,0464 \pm$	0,0066	0,0172 ± 0,0017	0,000523 ±	0,000179	0,0106 ±	0,0012
BP05	16/025244	10/05/2016	< 0,0180	<	0,116	$0,00557 \pm$	0,0027	-	-		-	
BP05	16/058007	08/11/2016	< 0,0202	<	0,135	0,0281 ±	0,0045	0,0209 ± 0,0021	0,000465 ±	0,00018	0,00902 ±	0,00107
BP06	16/025245	10/05/2016	0,0159 ± 0,0115	<	0,113	0,00768 ±	0,00297	-	-		-	
BP06	16/058009	08/11/2016	0,0556 ± 0,0171		0,130 ± 0,066	0,0419 ±	0,0071	0,0209 ± 0,0023	0,000629 ±	0,000257	0,0105 ±	0,0013

Tabella A 3 Risultati delle misure sui campioni di cereali (Bq/kg).

Punto	Campione	Data	U-234			U-235	U-238		
BC01	16/033559	22/06/2016	0,00535 ±	0,00168	<	0,00133	0,00242 ±	0,00116	
BC02	16/043536	23/08/2016	0,0105 ±	0,0022	<	0,00113	0,00957 ±	0,00207	
BC03	16/033569	22/06/2016	0,00350 ±	0,00157	<	0,00156	0,00298 ±	0,00120	
BC04	16/033571	22/06/2016	0,0156 ±	0,0032	<	0,00167	0,0141 ±	0,0031	

Tabella A 4 Risultati delle misure sui campioni di suolo indisturbato – strato superficiale 0-5 cm (Bq/kg). L'arricchimento dell'uranio naturale è pari a 0,72%.

Punto	Campione	Data	U-234	U-235	U-238	Arricchimento		
BS01	16/020836	15/04/2016	16,5 ± 2,0	0,779 ± 0,29	7 16,5 ± 2,0	0,73% ± 0,29%		
BS02	16/020837	15/04/2016	16,2 ± 2,2	0,633 ± 0,37	7 15,6 ± 2,1	0,63% ± 0,38%		
BS03	16/020838	15/04/2016	18,3 ± 3,1	0,848 ± 0,60	4 20,9 ± 3,4	0,63% ± 0,46%		
BS04	16/020841	15/04/2016	18,8 ± 1,8	0,598 ± 0,16	17,2 ± 1,6	0,54% ± 0,15%		

Tabella A 5 Risultati delle misure sui campioni di suolo coltivato (Bq/kg). L'arricchimento dell'uranio naturale è pari a 0,72%.

Punto	Campione	Data	U-234	U-235	U-238	Arricchimento		
BC01	16/033552	22/06/2016	25,4 ± 2,4	1,24 ± 0,28	26,8 ± 2,5	0,71% ± 0,17%		
BC02	16/043537	23/08/2016	30,2 ± 2,9	1,48 ± 0,33	31,4 ± 3,0	0,73% ± 0,18%		
BC03	16/033565	22/06/2016	28,6 ± 2,8	1,49 ± 0,34	29,8 ± 2,9	0,77% ± 0,19%		
BC04	16/033570	22/06/2016	22,4 ± 2,2	1,09 ± 0,28	23,7 ± 2,3	0,71% ± 0,19%		

Tabella A 6 Risultati delle misure sui campioni di acqua superficiale (Bq/l).

Punto	Campione	Data	Data Alfa totale Beta totale Attinic		Alfa totale Beta totale		Attinidi t	idi totali	
BF01	16/020698	14/04/2016	<	0,0542	<	0,349		0,0179 ±	0,0040
BF01	16/052008	05/10/2016	<	0,0194		0,287 ±	0,0036	0,0059 ±	0,0036
BF02	16/020704	14/04/2016	<	0,0553	<	0,395		0,00879 ±	0,00326
BF02	16/052014	05/10/2016	<	0,0222		0,309 ±	0,078	0,00960 ±	0,00258
BF03	16/020700	14/04/2016	<	0,0529		0,273 ±	0,209	0,0148 ±	0,0036
BF03	16/052020	05/10/2016	<	0,0196		0,249 ±	0,047	0,00848 ±	0,00305

Tabella A 7 Risultati delle misure sui campioni di sedimenti (Bq/kg). L'arricchimento dell'uranio naturale è pari a 0,72%.

Punto	Campione	Data	U-234		U-235		U-238	3	Arricchim	ento
BF01	16/020699	14/04/2016	8,40 ±	1,15	0,399 ±	0,237	7,74 ±	1,08	0,80% ±	0,49%
BF01	16/052011	05/10/2016	12,6 ±	1,4	0,639 ±	0,236	13,4 ±	1,5	0,74% ±	0,28%
BF02	16/020705	14/04/2016	9,02 ±	1,07	0,433 ±	0,190	8,80 ±	1,05	0,76% ±	0,35%
BF02	16/028509	30/05/2016	14,8 ±	1,6	0,852 ±	0,277	15,9 ±	1,7	0,83% ±	0,28%
BF02	16/052017	05/10/2016	14,2 ±	1,4	0,601 ±	0,204	15,6 ±	1,6	0,60% ±	0,21%
BF03	16/020701	14/04/2016	14,4 ±	1,6	0,676 ±	0,229	13,7 ±	1,5	0,76% ±	0,27%
BF03	16/052023	05/10/2016	24,6 ±	2,4	0,846 ±	0,263	26,2 ±	2,5	0,50% ±	0,16%

Tabella A 8 Risultati delle misure sui campioni compositi mensili di particolato atmosferico (Bq/m³).

		'	•	•	
Punto	Campione	Inizio campionamento	Fine campionamento	Cs-137	Be-7
BA01	16/009036	01/01/2016	01/02/2016	< 3,84E-05	0,00366 ± 0,00064
BA01	16/014842	01/02/2016	01/03/2016	< 1,58E-05	0,00293 ± 0,00047
BA01	16/020828	01/03/2016	01/04/2016	< 1,97E-05	$0,00455 \pm 0,00076$
BA01	16/031990	01/04/2016	01/05/2016	< 5,42E-05	$0,00567 \pm 0,00088$
BA01	16/025914	01/04/2016	01/05/2016	< 6,40E-05	$0,00630 \pm 0,00077$
BA01	16/031011	01/05/2016	01/06/2016	< 5,58E-05	$0,00533 \pm 0,00056$
BA01	16/036515	01/06/2016	01/07/2016	< 5,56E-05	$0,00534 \pm 0,00055$
BA01	16/043684	01/07/2016	01/08/2016	< 5,51E-05	$0,00847 \pm 0,00084$
BA01	16/047932	01/08/2016	01/09/2016	< 6,23E-05	0,00912 ± 0,00103
BA01	16/054078	01/09/2016	01/10/2016	< 4,38E-05	$0,00808 \pm 0,00073$
BA01	16/060129	01/10/2016	01/11/2016	< 1,84E-05	$0,00393 \pm 0,00094$
BA01	16/063055	01/11/2016	01/12/2016	< 2,09E-05	$0,00440 \pm 0,00070$
BA01	17/003950	01/12/2016	01/01/2017	< 6,99E-05	0,00521 ± 0,00071

Tabella A 9 Risultati delle misure sui filtri giornalieri di particolato atmosferico (Bq/m³).

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/002016	01/01/2016	02/01/2016	0,000115 ± 0,000040	0,00277 ± 0,00027
BA01	16/002017	02/01/2016	03/01/2016	< 0,0000788	0,00189 ± 0,00021
BA01	16/002018	03/01/2016	04/01/2016	0,0000840 ± 0,0000368	0,00192 ± 0,00022
BA01	16/002019	04/01/2016	05/01/2016	< 0,0000859	0,00161 ± 0,00022
BA01	16/002305	05/01/2016	06/01/2016	0,000122 ± 0,000042	0,00270 ± 0,00026
BA01	16/002306	06/01/2016	07/01/2016	0,0000876 ± 0,0000386	0,00222 ± 0,00024
BA01	16/002462	07/01/2016	08/01/2016	0,000136 ± 0,000041	0,00264 ± 0,00026
BA01	16/002525	08/01/2016	09/01/2016	< 0,0000824	0,00313 ± 0,00030
BA01	16/002526	09/01/2016	10/01/2016	0,000165 ± 0,000046	0,00289 ± 0,00028
BA01	16/002672	10/01/2016	11/01/2016	0,0000998 ± 0,0000431	0,00326 ± 0,00031
BA01	16/002673	11/01/2016	12/01/2016	0,0000745 ± 0,0000386	0,00129 ± 0,00019
BA01	16/003593	12/01/2016	13/01/2016	0,0000473 ± 0,0000353	< 0,000252
BA01	16/003594	13/01/2016	14/01/2016	< 0,0000711	0,000456 ± 0,000151
BA01	16/003595	14/01/2016	15/01/2016	0,0000831 ± 0,0000364	0,00128 ± 0,00018
BA01	16/003596	15/01/2016	16/01/2016	< 0,000082	0,000497 ± 0,000162
BA01	16/003597	16/01/2016	17/01/2016	< 0,0000774	0,000475 ± 0,00015
BA01	16/003599	17/01/2016	18/01/2016	0,0000705 ± 0,0000353	0,000602 ± 0,000155
BA01	16/003600	18/01/2016	19/01/2016	0,000101 ± 0,000053	0,00131 ± 0,00020
BA01	16/005599	19/01/2016	20/01/2016	0,0000971 ± 0,0000387	0,00195 ± 0,00022
BA01	16/005601	20/01/2016	21/01/2016	0,000136 ± 0,000041	0,00256 ± 0,00026
BA01	16/005603	21/01/2016	22/01/2016	0,000280 ± 0,000068	0,00326 ± 0,00032
BA01	16/005605	22/01/2016	23/01/2016	0,000177 ± 0,000046	0,00387 ± 0,00034
BA01	16/005606	23/01/2016	24/01/2016	0,000152 ± 0,000043	0,00374 ± 0,00033
BA01	16/005608	24/01/2016	25/01/2016	0,000152 ± 0,000042	0,00451 ± 0,00039
BA01	16/005610	25/01/2016	26/01/2016	< 0,0000865	0,00195 ± 0,00024
BA01	16/006463	26/01/2016	27/01/2016	0,0000894 ± 0,0000385	0,00166 ± 0,00020
BA01	16/006464	27/01/2016	28/01/2016	0,000193 ± 0,000046	0,00314 ± 0,00030
BA01	16/006465	28/01/2016	29/01/2016	0,0000828 ± 0,0000510	0,00310 ± 0,00030
BA01	16/006466	29/01/2016	30/01/2016	0,000175 ± 0,000046	0,00261 ± 0,00026
BA01	16/006467	30/01/2016	31/01/2016	0,000140 ± 0,000043	0,00344 ± 0,00031
BA01	16/006469	31/01/2016	01/02/2016	0,0000984 ± 0,0000377	0,00185 ± 0,00021
BA01	16/006471	01/02/2016	02/02/2016	0,000152 ± 0,000057	0,00161 ± 0,00021
BA01	16/007769	02/02/2016	03/02/2016	0,0000667 ± 0,0000401	0,00208 ± 0,00023
BA01	16/007770	03/02/2016	04/02/2016	0,0000665 ± 0,0000367	0,00131 ± 0,00019
BA01	16/007771	04/02/2016	05/02/2016	< 0,0000637	0,000547 ± 0,000154
BA01	16/007772	05/02/2016	06/02/2016	0,0000648 ± 0,0000352	0,00102 ± 0,00017
BA01	16/007773	06/02/2016	07/02/2016	0,000118 ± 0,000053	0,00147 ± 0,00020
BA01	16/007774	07/02/2016	08/02/2016	0,0000750 ± 0,0000362	0,000895 ± 0,000167
BA01	16/007776	08/02/2016	09/02/2016	0,000232 ± 0,000063	0,000928 ± 0,000182
BA01	16/008975	09/02/2016	10/02/2016	0,0000698 ± 0,000043	0,00103 ± 0,00019
BA01	16/008976	10/02/2016	11/02/2016	< 0,0000594	< 0,000296
BA01	16/008977	11/02/2016	12/02/2016	< 0,0000638	0,000594 ± 0,000155
BA01	16/008978	12/02/2016	13/02/2016	0,0000538 ± 0,0000357	0,000787 ± 0,000165
BA01	16/008980	13/02/2016	14/02/2016	0,0000690 ± 0,0000390	0,00123 ± 0,00019
BA01	16/008982	14/02/2016	15/02/2016	< 0,0000839	0,00134 ± 0,00019

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/008983	15/02/2016	16/02/2016	0,0000620 ± 0,0000366	0,000958 ± 0,000171
BA01	16/008984	16/02/2016	17/02/2016	< 0,0000605	0,000284 ± 0,000152
BA01	16/011651	17/02/2016	18/02/2016	< 0,0000725	0,000386 ± 0,00015
BA01	16/011652	18/02/2016	19/02/2016	< 0,0000824	0,000669 ± 0,000168
BA01	16/011653	19/02/2016	20/02/2016	< 0,0000703	0,000836 ± 0,000163
BA01	16/011654	20/02/2016	21/02/2016	0,0000853 ± 0,0000368	0,000925 ± 0,000168
BA01	16/011655	21/02/2016	22/02/2016	< 0,0000833	0,000626 ± 0,000168
BA01	16/011656	22/02/2016	23/02/2016	0,0000767 ± 0,000037	0,00111 ± 0,00018
BA01	16/011657	23/02/2016	24/02/2016	< 0,0000836	0,000917 ± 0,000179
BA01	16/013301	24/02/2016	25/02/2016	< 0,0000809	0,00112 ± 0,00018
BA01	16/013302	25/02/2016	26/02/2016	< 0,0000777	0,000863 ± 0,000165
BA01	16/013303	26/02/2016	27/02/2016	< 0,0000807	0,000991 ± 0,00017
BA01	16/013304	27/02/2016	28/02/2016	< 0,0000637	0,000319 ± 0,000145
BA01	16/013306	28/02/2016	29/02/2016	< 0,0000613	0,000290 ± 0,000156
BA01	16/013307	29/02/2016	01/03/2016	< 0,0000658	0,000315 ± 0,000157
BA01	16/006467	30/01/2016	31/01/2016	0,000140 ± 0,000043	0,00344 ± 0,00031
BA01	16/006469	31/01/2016	01/02/2016	0,0000984 ± 0,0000377	0,00185 ± 0,00021
BA01	16/006471	01/02/2016	02/02/2016	0,000152 ± 0,000057	0,00161 ± 0,00021
BA01	16/007769	02/02/2016	03/02/2016	0,0000667 ± 0,0000401	0,00208 ± 0,00023
BA01	16/007770	03/02/2016	04/02/2016	0,0000665 ± 0,0000367	0,00131 ± 0,00019
BA01	16/007771	04/02/2016	05/02/2016	< 0,0000637	0,000547 ± 0,000154
BA01	16/007772	05/02/2016	06/02/2016	0,0000648 ± 0,0000352	0,00102 ± 0,00017
BA01	16/007773	06/02/2016	07/02/2016	0,000118 ± 0,000053	0,00147 ± 0,00020
BA01	16/007774	07/02/2016	08/02/2016	0,0000750 ± 0,0000362	0,000895 ± 0,000167
BA01	16/007776	08/02/2016	09/02/2016	0,000232 ± 0,000063	0,000928 ± 0,000182
BA01	16/008975	09/02/2016	10/02/2016	0,0000698 ± 0,000043	0,00103 ± 0,00019
BA01	16/008976	10/02/2016	11/02/2016	< 0,0000594	< 0,000296
BA01	16/008977	11/02/2016	12/02/2016	< 0,0000638	0,000594 ± 0,000155
BA01	16/008978	12/02/2016	13/02/2016	0,0000538 ± 0,0000357	0,000787 ± 0,000165
BA01	16/008980	13/02/2016	14/02/2016	0,0000690 ± 0,0000390	0,00123 ± 0,00019
BA01	16/008982	14/02/2016	15/02/2016	< 0,0000839	0,00134 ± 0,00019
BA01	16/008983	15/02/2016	16/02/2016	0,0000620 ± 0,0000366	0,000958 ± 0,000171
BA01	16/008984	16/02/2016	17/02/2016	< 0,0000605	0,000284 ± 0,000152
BA01	16/011651	17/02/2016	18/02/2016	< 0,0000725	0,000386 ± 0,000150
BA01	16/011652	18/02/2016	19/02/2016	< 0,0000824	0,000669 ± 0,000168
BA01	16/011653	19/02/2016	20/02/2016	< 0,0000703	0,000836 ± 0,000163
BA01	16/011654	20/02/2016	21/02/2016	0,0000853 ± 0,0000368	0,000925 ± 0,000168
BA01	16/011655	21/02/2016	22/02/2016	< 0,0000833	0,000626 ± 0,000168
BA01	16/011656	22/02/2016	23/02/2016	0,0000767 ± 0,0000370	0,00111 ± 0,00018
BA01	16/011657	23/02/2016	24/02/2016	< 0,0000836	0,000917 ± 0,000179
BA01	16/013301	24/02/2016	25/02/2016	< 0,0000809	0,00112 ± 0,00018
BA01	16/013302	25/02/2016	26/02/2016	< 0,0000777	0,000863 ± 0,000165
BA01	16/013303	26/02/2016	27/02/2016	< 0,0000807	0,000991 ± 0,00017
BA01	16/013304	27/02/2016	28/02/2016	< 0,0000637	0,000319 ± 0,000145
BA01	16/013306	28/02/2016	29/02/2016	< 0,0000613	0,000290 ± 0,000156
BA01	16/013307	29/02/2016	01/03/2016	< 0,0000658	0,000315 ± 0,000157
BA01	16/013308	01/03/2016	02/03/2016	< 0,0000646	0,000723 ± 0,000160

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/013309	02/03/2016	03/03/2016	< 0,0000983	0,000476 ± 0,000197
BA01	16/013959	03/03/2016	04/03/2016	< 0,0000705	< 0,000323
BA01	16/013961	04/03/2016	05/03/2016	< 0,0000847	< 0,000270
BA01	16/013962	05/03/2016	06/03/2016	0,0000551 ± 0,0000343	0,000267 ± 0,000146
BA01	16/013963	06/03/2016	07/03/2016	0,0000537 ± 0,0000347	0,000386 ± 0,000149
BA01	16/013964	07/03/2016	08/03/2016	0,000124 ± 0,000054	0,000701 ± 0,000170
BA01	16/013965	08/03/2016	09/03/2016	< 0,0000631	0,00124 ± 0,00018
BA01	16/014487	09/03/2016	10/03/2016	< 0,0000756	0,000801 ± 0,000163
BA01	16/014488	10/03/2016	11/03/2016	0,0000476 ± 0,0000347	0,00109 ± 0,00018
BA01	16/014489	11/03/2016	12/03/2016	0,000194 ± 0,000059	0,00120 ± 0,00019
BA01	16/014490	12/03/2016	13/03/2016	0,0000642 ± 0,0000382	0,00133 ± 0,00019
BA01	16/014491	13/03/2016	14/03/2016	< 0,0000652	0,00108 ± 0,00018
BA01	16/014492	14/03/2016	15/03/2016	0,0000580 ± 0,0000406	0,00124 ± 0,00019
BA01	16/015411	15/03/2016	16/03/2016	< 0,0000710	0,000853 ± 0,000172
BA01	16/015412	16/03/2016	17/03/2016	< 0,0000583	0,000373 ± 0,000148
BA01	16/015413	17/03/2016	18/03/2016	< 0,0000710	0,000906 ± 0,000166
BA01	16/015414	18/03/2016	19/03/2016	< 0,0000649	0,00118 ± 0,00018
BA01	16/015415	19/03/2016	20/03/2016	< 0,0000614	0,00104 ± 0,00018
BA01	16/015416	20/03/2016	21/03/2016	< 0,0000657	0,00128 ± 0,00019
BA01	16/015417	21/03/2016	22/03/2016	< 0,0000702	0,00146 ± 0,00020
BA01	16/016805	22/03/2016	23/03/2016	0,000074 ± 0,0000369	0,00132 ± 0,00019
BA01	16/016806	23/03/2016	24/03/2016	< 0,0000796	0,00122 ± 0,00018
BA01	16/016807	24/03/2016	25/03/2016	0,000412 ± 0,000081	0,00101 ± 0,00019
BA01	16/016808	25/03/2016	26/03/2016	< 0,0000562	0,000782 ± 0,000163
BA01	16/016810	26/03/2016	27/03/2016	< 0,0000775	0,00116 ± 0,00018
BA01	16/016811	27/03/2016	28/03/2016	0,000342 ± 0,000073	0,000667 ± 0,000174
BA01	16/016812	28/03/2016	29/03/2016	< 0,0000629	0,000464 ± 0,000167
BA01	16/018147	29/03/2016	30/03/2016	< 0,0000719	0,000555 ± 0,000165
BA01	16/018148	30/03/2016	31/03/2016	0,0000476 ± 0,0000362	0,000759 ± 0,000164
BA01	16/018150	31/03/2016	01/04/2016	< 0,0000878	0,00105 ± 0,00018
BA01	16/018151	01/04/2016	02/04/2016	< 0,0000888	0,00125 ± 0,00018
BA01	16/018153	02/04/2016	03/04/2016	0,0000889 ± 0,0000403	0,00157 ± 0,00021
BA01	16/018154	03/04/2016	04/04/2016	0,000107 ± 0,000045	0,00208 ± 0,00023
BA01	16/018156	04/04/2016	05/04/2016	0,000129 ± 0,000049	0,00184 ± 0,00022
BA01	16/019181	05/04/2016	06/04/2016	0,000118 ± 0,000043	0,00182 ± 0,00022
BA01	16/019182	06/04/2016	07/04/2016	0,000114 ± 0,000045	0,00188 ± 0,00022
BA01	16/019183	07/04/2016	08/04/2016	0,000137 ± 0,000044	0,00155 ± 0,00021
BA01	16/019184	08/04/2016	09/04/2016	0,000134 ± 0,000045	0,00223 ± 0,00024
BA01	16/019185	09/04/2016	10/04/2016	< 0,0000669	0,000736 ± 0,000164
BA01	16/019186	10/04/2016	11/04/2016	< 0,0000705	0,000691 ± 0,00017
BA01	16/021313	11/04/2016	12/04/2016	0,0000567 ± 0,0000364	0,000572 ± 0,000169
BA01	16/021314	12/04/2016	13/04/2016	0,0000776 ± 0,0000385	0,000838 ± 0,000168
BA01	16/021317	13/04/2016	14/04/2016	0,0000578 ± 0,0000391	0,000607 ± 0,000164
BA01	16/021320	14/04/2016	15/04/2016	< 0,0000627	0,000251 ± 0,000154
BA01	16/021322	15/04/2016	16/04/2016	< 0,0000630	0,000428 ± 0,000163
BA01	16/021325	16/04/2016	17/04/2016	< 0,0000678	0,000665 ± 0,000172
BA01	16/021329	17/04/2016	18/04/2016	0,0000692 ± 0,0000369	0,000236 ± 0,000154

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/021331	18/04/2016	19/04/2016	< 0,000636	0,000657 ± 0,000165
BA01	16/022092	19/04/2016	20/04/2016	< 0,0000628	0,000494 ± 0,000160
BA01	16/022093	20/04/2016	21/04/2016	0,0000729 ± 0,0000375	0,000806 ± 0,000174
BA01	16/022094	21/04/2016	22/04/2016	0,0000716 ± 0,0000377	0,00120 ± 0,00018
BA01	16/022095	22/04/2016	23/04/2016	0,0000654 ± 0,0000397	0,00107 ± 0,00018
BA01	16/022097	23/04/2016	24/04/2016	< 0,000630	0,000894 ± 0,000173
BA01	16/022098	24/04/2016	25/04/2016	< 0,0000629	< 0,000337
BA01	16/022100	25/04/2016	26/04/2016	< 0,0000663	0,000384 ± 0,000166
BA01	16/023453	26/04/2016	27/04/2016	< 0,0000698	0,000639 ± 0,000165
BA01	16/023456	27/04/2016	28/04/2016	< 0,0000777	0,000667 ± 0,000171
BA01	16/023460	28/04/2016	29/04/2016	0,0000673 ± 0,000037	0,000783 ± 0,000164
BA01	16/023461	29/04/2016	30/04/2016	0,0000731 ± 0,0000399	0,000918 ± 0,000171
BA01	16/023465	30/04/2016	01/05/2016	< 0,0000799	0,000786 ± 0,000167
BA01	16/023467	01/05/2016	02/05/2016	< 0,0000618	0,000443 ± 0,00016
BA01	16/023474	02/05/2016	03/05/2016	< 0,0000671	0,000289 ± 0,00016
BA01	16/025236	03/05/2016	04/05/2016	< 0,0000673	0,000729 ± 0,000173
BA01	16/025238	04/05/2016	05/05/2016	0,0000544 ± 0,0000352	0,000846 ± 0,000170
BA01	16/025239	05/05/2016	06/05/2016	< 0,0000618	0,000803 ± 0,000166
BA01	16/025240	06/05/2016	07/05/2016	0,0000643 ± 0,0000392	0,00120 ± 0,00019
BA01	16/025241	07/05/2016	08/05/2016	< 0,0000731	0,00147 ± 0,00020
BA01	16/025242	08/05/2016	09/05/2016	0,0000652 ± 0,0000364	0,00134 ± 0,00019
BA01	16/025243	09/05/2016	10/05/2016	0,0000715 ± 0,0000389	0,00147 ± 0,00020
BA01	16/026668	10/05/2016	11/05/2016	0,000132 ± 0,000045	0,00128 ± 0,00019
BA01	16/026670	11/05/2016	12/05/2016	< 0,0000665	0,000264 ± 0,000154
BA01	16/026671	12/05/2016	13/05/2016	< 0,0000679	0,000458 ± 0,000159
BA01	16/026673	13/05/2016	14/05/2016	< 0,0000797	0,000297 ± 0,000158
BA01	16/026674	14/05/2016	15/05/2016	< 0,0000681	0,000260 ± 0,000163
BA01	16/026675	15/05/2016	16/05/2016	< 0,0000765	0,000640 ± 0,000169
BA01	16/026676	16/05/2016	17/05/2016	< 0,0000666	0,00107 ± 0,00018
BA01	16/026677	17/05/2016	18/05/2016	< 0,0000688	0,000921 ± 0,000180
BA01	16/027802	18/05/2016	19/05/2016	0,0000737 ± 0,0000392	0,00113 ± 0,00019
BA01	16/027804	19/05/2016	20/05/2016	< 0,0000670	0,000261 ± 0,000154
BA01	16/027806	20/05/2016	21/05/2016	< 0,0000664	0,000400 ± 0,000156
BA01	16/027808	21/05/2016	22/05/2016	< 0,0000659	0,000566 ± 0,000162
BA01	16/027811	22/05/2016	23/05/2016	0,0000497 ± 0,000037	0,000982 ± 0,000177
BA01	16/027813	23/05/2016	24/05/2016	< 0,0000675	< 0,000263
BA01	16/028664	24/05/2016	25/05/2016	< 0,0000626	0,000329 ± 0,00016
BA01	16/028666	25/05/2016	26/05/2016	< 0,0000602	0,000416 ± 0,000158
BA01	16/028668	26/05/2016	27/05/2016	< 0,0000679	0,000748 ± 0,000167
BA01	16/028670	27/05/2016	28/05/2016	0,0000746 ± 0,0000382	0,00118 ± 0,00019
BA01	16/028673	28/05/2016	29/05/2016	0,000100 ± 0,000045	0,00124 ± 0,00020
BA01	16/028676	29/05/2016	30/05/2016	< 0,0000616	0,000375 ± 0,000163
BA01	16/028680	30/05/2016	31/05/2016	< 0,0000678	0,000289 ± 0,000157
BA01	16/029342	31/05/2016	01/06/2016	< 0,000660	0,000360 ± 0,000157
BA01	16/029344	01/06/2016	02/06/2016	< 0,0000611	0,000410 ± 0,000157
BA01	16/029345	02/06/2016	03/06/2016	< 0,0000707	0,000585 ± 0,000169
BA01	16/029346	03/06/2016	04/06/2016	< 0,0000667	0,000751 ± 0,000167

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/029347	04/06/2016	05/06/2016	< 0,000699	0,000773 ± 0,000178
BA01	16/029348	05/06/2016	06/06/2016	< 0.000634	0,00108 ± 0,00019
BA01	16/029349	06/06/2016	07/06/2016	< 0.0000699	0,00111 ± 0,00019
BA01	16/031195	07/06/2016	08/06/2016	0,0000569 ± 0,0000374	0,00134 ± 0,00019
BA01	16/031197	08/06/2016	09/06/2016	0,0000576 ± 0,0000372	0,00131 ± 0,00019
BA01	16/031200	09/06/2016	10/06/2016	< 0.0000642	0,000618 ± 0,000169
BA01	16/031202	10/06/2016	11/06/2016	< 0,000833	0,00109 ± 0,00018
BA01	16/031204	11/06/2016	12/06/2016	< 0,000644	0,00111 ± 0,00019
BA01	16/031205	12/06/2016	13/06/2016	< 0.000648	0,000742 ± 0,000174
BA01	16/031206	13/06/2016	14/06/2016	0,0000633 ± 0,0000405	0,000775 ± 0,000178
BA01	16/034143	21/06/2016	22/06/2016	< 0.0000705	0,00083 ± 0,000161
BA01	16/034145	22/06/2016	23/06/2016	< 0,0000723	0,00117 ± 0,00017
BA01	16/034146	22/06/2016	24/06/2016	0,0000798 ± 0,00004	0,00187 ± 0,00022
BA01	16/034148	24/06/2016	25/06/2016	< 0,000849	0,00220 ± 0,00024
BA01	16/034150	25/06/2016	26/06/2016	0,0000518 ± 0,000039	0,00142 ± 0,00020
BA01	16/034151	26/06/2016	27/06/2016	< 0,0000806	0,00157 ± 0,00021
BA01	16/034153	27/06/2016	28/06/2016	< 0,000775	0,000995 ± 0,000218
BA01	16/035093	28/06/2016	29/06/2016	< 0,000704	0,00124 ± 0,00019
BA01	16/035095	29/06/2016	30/06/2016	< 0,000873	0,00170 ± 0,00021
BA01	16/035097	30/06/2016	01/07/2016	0,0000559 ± 0,0000381	0,00138 ± 0,00020
BA01	16/035098	01/07/2016	02/07/2016	< 0,0000841	0,00187 ± 0,00022
BA01	16/035100	02/07/2016	03/07/2016	0,0000858 ± 0,0000389	0,00165 ± 0,00021
BA01	16/035102	03/07/2016	04/07/2016	< 0,0000744	0,00104 ± 0,00019
BA01	16/035103	04/07/2016	05/07/2016	< 0,0000742	0,00111 ± 0,00019
BA01	16/036131	05/07/2016	06/07/2016	< 0,0000859	0,00194 ± 0,00023
BA01	16/036133	06/07/2016	07/07/2016	0,0000572 ± 0,0000382	0,00180 ± 0,00022
BA01	16/036134	07/07/2016	08/07/2016	0,0000895 ± 0,0000386	0,00240 ± 0,00026
BA01	16/036136	08/07/2016	09/07/2016	0,0000563 ± 0,0000370	0,00197 ± 0,00023
BA01	16/036137	09/07/2016	10/07/2016	0,0000637 ± 0,0000389	0,00226 ± 0,00024
BA01	16/036140	10/07/2016	11/07/2016	0,0000907 ± 0,0000380	0,00237 ± 0,00025
BA01	16/036142	11/07/2016	12/07/2016	0,0000727 ± 0,0000405	0,00227 ± 0,00025
BA01	16/037339	12/07/2016	13/07/2016	< 0,0000917	0,00219 ± 0,00024
BA01	16/037341	13/07/2016	14/07/2016	< 0,0000678	0,000745 ± 0,000166
BA01	16/037342	14/07/2016	15/07/2016	< 0,0000651	0,000381 ± 0,000157
BA01	16/037343	15/07/2016	16/07/2016	< 0,0000685	0,000910 ± 0,000173
BA01	16/037344	16/07/2016	17/07/2016	< 0,0000683	0,000333 ± 0,000163
BA01	16/037345	17/07/2016	18/07/2016	0,0000559 ± 0,0000368	0,00103 ± 0,00018
BA01	16/037346	18/07/2016	19/07/2016	< 0,0000703	0,00126 ± 0,00020
BA01	16/038705	19/07/2016	20/07/2016	0,0000779 ± 0,0000393	0,00163 ± 0,00021
BA01	16/038707	20/07/2016	21/07/2016	0,0000670 ± 0,0000415	0,00205 ± 0,00023
BA01	16/038709	21/07/2016	22/07/2016	0,0000677 ± 0,0000385	0,00136 ± 0,00020
BA01	16/038711	22/07/2016	23/07/2016	0,0000543 ± 0,0000367	0,00154 ± 0,00021
BA01	16/038712	23/07/2016	24/07/2016	0,0000542 ± 0,0000372	0,00136 ± 0,00019
BA01	16/038714	24/07/2016	25/07/2016	0,0000777 ± 0,0000373	0,00186 ± 0,00022
BA01	16/040630	25/07/2016	26/07/2016	0,000146 ± 0,000048	0,00191 ± 0,00023
BA01	16/040631	26/07/2016	27/07/2016	0,000158 ± 0,000049	0,00214 ± 0,00023
BA01	16/040632	27/07/2016	28/07/2016	0,000183 ± 0,000049	0,00192 ± 0,00023

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/040633	28/07/2016	29/07/2016	0,000132 ± 0,000048	0,00197 ± 0,00023
BA01	16/040634	29/07/2016	30/07/2016	0,000143 ± 0,000045	0,00194 ± 0,00023
BA01	16/040636	30/07/2016	31/07/2016	0,000129 ± 0,000045	0,00186 ± 0,00022
BA01	16/040637	31/07/2016	01/08/2016	0,0000707 ± 0,0000407	0,00138 ± 0,00020
BA01	16/040638	01/08/2016	02/08/2016	0,0000664 ± 0,0000442	0,00125 ± 0,00020
BA01	16/041884	02/08/2016	03/08/2016	0,000118 ± 0,000045	0,00186 ± 0,00022
BA01	16/041885	03/08/2016	04/08/2016	0,000114 ± 0,000043	0,00174 ± 0,00022
BA01	16/041886	04/08/2016	05/08/2016	0,0000610 ± 0,0000424	0,00157 ± 0,00021
BA01	16/041887	05/08/2016	06/08/2016	< 0,0000768	0,000577 ± 0,000171
BA01	16/041888	06/08/2016	07/08/2016	< 0,000067	0,000402 ± 0,000164
BA01	16/041890	07/08/2016	08/08/2016	< 0,0000699	0,000897 ± 0,000176
BA01	16/041891	08/08/2016	09/08/2016	0,000113 ± 0,000043	0,00122 ± 0,00019
BA01	16/042797	09/08/2016	10/08/2016	0,0000834 ± 0,0000422	0,00144 ± 0,00020
BA01	16/042798	10/08/2016	11/08/2016	< 0,0000657	0,00082 ± 0,000171
BA01	16/042799	11/08/2016	12/08/2016	0,0000549 ± 0,0000399	0,000656 ± 0,000174
BA01	16/042801	12/08/2016	13/08/2016	0,0000974 ± 0,0000389	0,000941 ± 0,000183
BA01	16/042802	13/08/2016	14/08/2016	0,000105 ± 0,000040	0,00127 ± 0,00020
BA01	16/042804	14/08/2016	15/08/2016	0,0000681 ± 0,0000425	0,00136 ± 0,00020
BA01	16/042805	15/08/2016	16/08/2016	< 0,0000844	0,00113 ± 0,00019
BA01	16/043489	16/08/2016	17/08/2016	0,0000767 ± 0,0000437	0,00130 ± 0,00020
BA01	16/043490	17/08/2016	18/08/2016	0,0000648 ± 0,000042	0,00134 ± 0,00020
BA01	16/043493	18/08/2016	19/08/2016	0,0000928 ± 0,0000449	0,00191 ± 0,00023
BA01	16/043494	19/08/2016	20/08/2016	0,0000832 ± 0,0000434	0,00231 ± 0,00025
BA01	16/043496	20/08/2016	21/08/2016	0,000115 ± 0,000046	0,00252 ± 0,00026
BA01	16/043499	21/08/2016	22/08/2016	0,0000719 ± 0,0000422	0,00155 ± 0,00020
BA01	16/043500	22/08/2016	23/08/2016	< 0,0000738	0,000898 ± 0,00019
BA01	16/043939	23/08/2016	24/08/2016	< 0,0000732	0,00137 ± 0,00019
BA01	16/043942	24/08/2016	25/08/2016	0,0000749 ± 0,0000421	0,00132 ± 0,00020
BA01	16/043944	25/08/2016	26/08/2016	0,000110 ± 0,000040	0,00135 ± 0,00020
BA01	16/043947	26/08/2016	27/08/2016	< 0,0000775	0,00162 ± 0,00021
BA01	16/043949	27/08/2016	28/08/2016	< 0,0000833	0,00186 ± 0,00022
BA01	16/043951	28/08/2016	29/08/2016	0,0000663 ± 0,0000429	0,00232 ± 0,00025
BA01	16/043954	29/08/2016	30/08/2016	< 0,0000729	0,00206 ± 0,00024
BA01	16/045921	30/08/2016	31/08/2016	0,0000751 ± 0,0000389	0,00193 ± 0,00022
BA01	16/045923	31/08/2016	01/09/2016	0,0000828 ± 0,0000418	0,00216 ± 0,00023
BA01	16/045925	01/09/2016	02/09/2016	0,0000869 ± 0,0000424	0,00243 ± 0,00025
BA01	16/045926	02/09/2016	03/09/2016	0,0000792 ± 0,0000428	0,00279 ± 0,00028
BA01	16/045928	03/09/2016	04/09/2016	0,000100 ± 0,000040	0,00267 ± 0,00028
BA01	16/045930	04/09/2016	05/09/2016	< 0,0000944	0,00313 ± 0,00030
BA01	16/045931	05/09/2016	06/09/2016	< 0,0000685	0,00146 ± 0,00020
BA01	16/046757	06/09/2016	07/09/2016	0,0000502 ± 0,0000366	0,000788 ± 0,000171
BA01	16/046759	07/09/2016	08/09/2016	0,0000594 ± 0,0000396	0,00116 ± 0,00018
BA01	16/046760	08/09/2016	09/09/2016	0,0000884 ± 0,0000423	0,00262 ± 0,00026
BA01	16/046762	09/09/2016	10/09/2016	0,000172 ± 0,000050	0,00475 ± 0,00042
BA01	16/046763	10/09/2016	11/09/2016	0,0000546 ± 0,0000359	0,00149 ± 0,00021
BA01	16/046765	11/09/2016	12/09/2016	0,000142 ± 0,000028	0,00334 ± 0,00031
BA01	16/046766	12/09/2016	13/09/2016	0,000113 ± 0,000049	0,00332 ± 0,00032

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/049063	13/09/2016	14/09/2016	0.0000652 ± 0.0000426	0,00332 ± 0,00032
BA01	16/049065	14/09/2016	15/09/2016	0,000216 ± 0,000054	0,00345 ± 0,00032
BA01	16/049067	15/09/2016	16/09/2016	0,0000796 ± 0,0000393	0,00118 ± 0,00018
BA01	16/049069	16/09/2016	17/09/2016	0,0000951 ± 0,0000399	0,00129 ± 0,00020
BA01	16/049070	17/09/2016	18/09/2016	< 0,000875	0,000986 ± 0,00018
BA01	16/049073	18/09/2016	19/09/2016	< 0,0000645	0,000641 ± 0,000166
BA01	16/049076	19/09/2016	20/09/2016	0,0000686 ± 0,0000367	0,000863 ± 0,000174
BA01	16/050533	20/09/2016	21/09/2016	< 0,0000891	0,00136 ± 0,00019
BA01	16/050534	21/09/2016	22/09/2016	0,000059 ± 0,0000394	0,00115 ± 0,00018
BA01	16/050535	22/09/2016	23/09/2016	0,0000853 ± 0,0000402	0,00180 ± 0,00022
BA01	16/050537	23/09/2016	24/09/2016	0,000118 ± 0,000041	0,00214 ± 0,00024
BA01	16/050538	24/09/2016	25/09/2016	0,000112 ± 0,000043	0,00255 ± 0,00026
BA01	16/050539	25/09/2016	26/09/2016	0,0000999 ± 0,0000403	0,00248 ± 0,00026
BA01	16/050540	26/09/2016	27/09/2016	0,000115 ± 0,000044	0,00326 ± 0,00030
BA01	16/050541	27/09/2016	28/09/2016	0,000138 ± 0,000044	0,00361 ± 0,00033
BA01	16/051444	28/09/2016	29/09/2016	0,000164 ± 0,000048	0,00374 ± 0,00033
BA01	16/051448	29/09/2016	30/09/2016	0,000161 ± 0,000045	0,00399 ± 0,00035
BA01	16/051453	30/09/2016	01/10/2016	0,000159 ± 0,000045	0,00329 ± 0,00031
BA01	16/051458	01/10/2016	02/10/2016	0,000203 ± 0,000053	0,00488 ± 0,00041
BA01	16/051462	02/10/2016	03/10/2016	0,0000743 ± 0,0000409	0,00168 ± 0,00021
BA01	16/051464	03/10/2016	04/10/2016	0,0000605 ± 0,0000376	0,00137 ± 0,00020
BA01	16/052653	04/10/2016	05/10/2016	0,0000618 ± 0,0000370	0,00141 ± 0,00020
BA01	16/052654	05/10/2016	06/10/2016	0,0000511 ± 0,0000388	0,00127 ± 0,00019
BA01	16/052655	06/10/2016	07/10/2016	< 0,0000707	0,000975 ± 0,000172
BA01	16/052656	07/10/2016	08/10/2016	0,0000550 ± 0,0000367	0,00124 ± 0,00019
BA01	16/052657	08/10/2016	09/10/2016	0,0000819 ± 0,0000384	0,00174 ± 0,00021
BA01	16/052658	09/10/2016	10/10/2016	< 0,0000628	0,00127 ± 0,00018
BA01	16/052659	10/10/2016	11/10/2016	< 0,0000630	0,00139 ± 0,00020
BA01	16/054405	11/10/2016	12/10/2016	< 0,0000625	0,00115 ± 0,00018
BA01	16/054408	12/10/2016	13/10/2016	< 0,0000732	0,00147 ± 0,00019
BA01	16/054409	13/10/2016	14/10/2016	< 0,0000679	0,00161 ± 0,00021
BA01	16/054411	14/10/2016	15/10/2016	< 0,0000536	0,00057 ± 0,000141
BA01	16/054412	15/10/2016	16/10/2016	< 0,0000585	0,000738 ± 0,000168
BA01	16/054413	16/10/2016	17/10/2016	< 0,0000629	0,00108 ± 0,00018
BA01	16/054414	17/10/2016	18/10/2016	0,000122 ± 0,000048	0,00222 ± 0,00027
BA01	16/055259	18/10/2016	19/10/2016	0,000114 ± 0,000044	0,00202 ± 0,00023
BA01	16/055262	19/10/2016	20/10/2016	0,000110 ± 0,000043	0,00244 ± 0,00025
BA01	16/055263	20/10/2016	21/10/2016	0,0000925 ± 0,0000377	0,00131 ± 0,00019
BA01	16/055265	21/10/2016	22/10/2016	< 0,0000917	0,00138 ± 0,00019
BA01	16/055267	22/10/2016	23/10/2016	0,0000987 ± 0,0000415	0,00226 ± 0,00024
BA01	16/055268	23/10/2016	24/10/2016	< 0,000111	0,00198 ± 0,00029
BA01	16/055269	24/10/2016	25/10/2016	0,000117 ± 0,000045	0,00255 ± 0,00026
BA01	16/057425	25/10/2016	26/10/2016	0,000102 ± 0,000040	0,00223 ± 0,00024
BA01	16/057426	26/10/2016	27/10/2016	0,0000806 ± 0,0000378	0,00188 ± 0,00022
BA01	16/057427	27/10/2016	28/10/2016	< 0,0000846	0,00133 ± 0,00019
BA01	16/057428	28/10/2016	29/10/2016	0,0000804 ± 0,0000397	0,00167 ± 0,00021
BA01	16/057429	29/10/2016	30/10/2016	0,000102 ± 0,000039	0,00213 ± 0,00023

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/057430	30/10/2016	31/10/2016	0,000115 ± 0,000043	0,00250 ± 0,00025
BA01	16/057431	31/10/2016	01/11/2016	0,0000815 ± 0,0000377	0,00244 ± 0,00025
BA01	16/057432	01/11/2016	02/11/2016	0,000194 ± 0,000047	0,00361 ± 0,00033
BA01	16/057993	02/11/2016	03/11/2016	0,000270 ± 0,000056	0,00446 ± 0,00038
BA01	16/057994	03/11/2016	04/11/2016	0,000205 ± 0,000046	0,00345 ± 0,00032
BA01	16/057995	04/11/2016	05/11/2016	0,0000753 ± 0,0000398	0,00200 ± 0,00023
BA01	16/057996	05/11/2016	06/11/2016	0,0000532 ± 0,0000351	0,00110 ± 0,00018
BA01	16/057998	06/11/2016	07/11/2016	< 0,0000608	0,00103 ± 0,00018
BA01	16/057999	07/11/2016	08/11/2016	0,0000813 ± 0,000036	0,000906 ± 0,000172
BA01	16/059448	08/11/2016	09/11/2016	0,0000547 ± 0,0000382	0,00174 ± 0,00021
BA01	16/059450	09/11/2016	10/11/2016	0,000149 ± 0,000040	0,00223 ± 0,00024
BA01	16/059451	10/11/2016	11/11/2016	0,000124 ± 0,000043	0,00278 ± 0,00027
BA01	16/059452	11/11/2016	12/11/2016	0,0000986 ± 0,0000399	0,00197 ± 0,00022
BA01	16/059453	12/11/2016	13/11/2016	0,0000896 ± 0,0000357	0,000682 ± 0,000160
BA01	16/059454	13/11/2016	14/11/2016	0,0000723 ± 0,0000390	0,00165 ± 0,00021
BA01	16/062715	14/11/2016	15/11/2016	0,0000804 ± 0,0000398	0,00134 ± 0,00018
BA01	16/061810	15/11/2016	16/11/2016	0,0000936 ± 0,0000361	0,00186 ± 0,00019
BA01	16/061811	16/11/2016	17/11/2016	0,000181 ± 0,000044	0,00264 ± 0,00024
BA01	16/061812	17/11/2016	18/11/2016	0,000242 ± 0,000049	0,00396 ± 0,00033
BA01	16/061813	18/11/2016	19/11/2016	0,000168 ± 0,000047	0,00374 ± 0,00033
BA01	16/061814	19/11/2016	20/11/2016	0,000229 ± 0,000050	0,00383 ± 0,00033
BA01	16/061815	20/11/2016	21/11/2016	0,000151 ± 0,000042	0,00284 ± 0,00026
BA01	16/061816	21/11/2016	22/11/2016	0,000158 ± 0,000043	0,00255 ± 0,00024
BA01	16/060484	22/11/2016	23/11/2016	0,0000587 ± 0,0000341	0,00120 ± 0,00018
BA01	16/060485	23/11/2016	24/11/2016	0,0000782 ± 0,000039	0,00120 ± 0,00018
BA01	16/060486	24/11/2016	25/11/2016	0,0000839 ± 0,0000362	0,000695 ± 0,000164
BA01	16/060487	25/11/2016	26/11/2016	< 0,0000632	0,000547 ± 0,000161
BA01	16/060488	26/11/2016	27/11/2016	< 0,0000709	0,000618 ± 0,000162
BA01	16/060489	27/11/2016	28/11/2016	0,0000923 ± 0,0000439	0,00107 ± 0,00021
BA01	16/061585	28/11/2016	29/11/2016	< 0,0000631	0,000781 ± 0,000169
BA01	16/061587	29/11/2016	30/11/2016	0,0000593 ± 0,000034	0,000646 ± 0,00016
BA01	16/061588	30/11/2016	01/12/2016	< 0,0000836	0,00120 ± 0,00018
BA01	16/061590	01/12/2016	02/12/2016	0,0000941 ± 0,0000401	0,00177 ± 0,00021
BA01	16/061592	02/12/2016	03/12/2016	0,000147 ± 0,000045	0,00288 ± 0,00027
BA01	16/061594	03/12/2016	04/12/2016	0,000176 ± 0,000044	0,00337 ± 0,00031
BA01	16/061596	04/12/2016	05/12/2016	0,000118 ± 0,000039	0,00300 ± 0,00029
BA01	16/061597	05/12/2016	06/12/2016	0,000240 ± 0,000055	0,00390 ± 0,00034
BA01	16/062249	06/12/2016	07/12/2016	0,000199 ± 0,000048	0,00344 ± 0,00030
BA01	16/062251	07/12/2016	08/12/2016	0,000183 ± 0,000053	0,00367 ± 0,00034
BA01	16/062252	08/12/2016	09/12/2016	0,000211 ± 0,000049	0,00388 ± 0,00035
BA01	16/062255	09/12/2016	10/12/2016	0,0000460 ± 0,0000348	0,00277 ± 0,00027
BA01	16/062257	10/12/2016	11/12/2016	0,000210 ± 0,000048	0,00433 ± 0,00037
BA01	16/062260	11/12/2016	12/12/2016	0,000180 ± 0,000045	0,00348 ± 0,00031
BA01	16/062262	12/12/2016	13/12/2016	0,000107 ± 0,000040	0,00262 ± 0,00026
BA01	16/063118	13/12/2016	14/12/2016	0,000133 ± 0,000040	0,00235 ± 0,00024
BA01	16/063119	14/12/2016	15/12/2016	0,000111 ± 0,000039	0,00345 ± 0,00031
BA01	16/063120	15/12/2016	16/12/2016	0,000158 ± 0,000042	0,00377 ± 0,00033

Punto	Numero Campione	Inizio campionamento	Fine campionamento	Alfa totale	Beta totale
BA01	16/063121	16/12/2016	17/12/2016	0,000241 ± 0,000050	0,00390 ± 0,00034
BA01	16/063122	17/12/2016	18/12/2016	< 0,0000543	0,00249 ± 0,00024
BA01	16/063123	18/12/2016	19/12/2016	< 0,0000549	0,00217 ± 0,00023
BA01	16/063124	19/12/2016	20/12/2016	0,000113 ± 0,000039	0,00245 ± 0,00024
BA01	16/063125	20/12/2016	21/12/2016	0,0000698 ± 0,0000325	0,000731 ± 0,000143
BA01	16/063749	21/12/2016	22/12/2016	0,0000588 ± 0,000036	0,000922 ± 0,000158
BA01	16/063750	22/12/2016	23/12/2016	0,0000841 ± 0,0000362	0,000695 ± 0,000154
BA01	16/063751	23/12/2016	24/12/2016	0,0000781 ± 0,0000388	0,00169 ± 0,00020
BA01	16/063752	24/12/2016	25/12/2016	0,0000954 ± 0,0000392	0,00171 ± 0,00021
BA01	16/063753	25/12/2016	26/12/2016	0,0000670 ± 0,0000374	0,00166 ± 0,00020
BA01	16/063754	26/12/2016	27/12/2016	0,000101 ± 0,000038	0,00125 ± 0,00018
BA01	16/063755	27/12/2016	28/12/2016	0,0000635 ± 0,0000380	0,00114 ± 0,00018
BA01	17/002794	28/12/2016	29/12/2016	0,0000699 ± 0,0000360	0,00133 ± 0,00018
BA01	17/002795	29/12/2016	30/12/2016	0,0000960 ± 0,0000388	0,00245 ± 0,00025
BA01	17/002796	30/12/2016	31/12/2016	< 0,0000530	0,00118 ± 0,00017
BA01	17/002797	31/12/2016	01/01/2017	0,0000553 ± 0,0000343	0,00191 ± 0,00021

ALLEGATO 2 - Metodi

- U.RP.M742 "Determinazione dell'attività alfa totale da attinidi nell'acqua Eichrom Technologies, Inc. ACW11-03 Gross Alpha Radioactivity in Water" – metodo esterno non normalizzato:
- U.RP.M752 "Determinazione di U-234, U-235 e U-238 in suolo, sedimento e fango Eichrom Technologies, Inc. ACS07 rev. 1.5 Uranium in soil" metodo esterno non normalizzato;
- U.RP.M763 "Determinazione di U-234, U-235 e U-238 nei vegetali HASL-300, 28th edition, vol I U-02-RC rev. 1 2000 p. 2 + Eichrom Technologies, Inc. ACW02 rev. 1.3 Uranium in Water" metodo esterno non normalizzato:
- U.RP.M808: "Determinazione del contenuto di attività alfa totale e beta nel particolato atmosferico APAT CTN-AGF AB 01" metodo esterno non normalizzato;
- U.RP.MA009 "Determinazione della concentrazione di attività alfa totale e beta totale nelle acque non saline mediante scintillazione liquida" ISO 11704: 2010 Water quality Measurement of gross alpha and beta activity concentration in non-saline water Liquid scintillation counting method metodo normalizzato accreditato ISO 17025 (Certificato ACCREDIA n. 0203 Sede G Alessandria Elenco prove revisione 12 del 24/09/2015);
- U.RP.MA017 "Determinazione degli isotopi di uranio in acqua" ISO 13166: 2014 Water quality - Uranium isotopes - Test method using alpha-spectrometry – metodo normalizzato accreditato ISO 17025 dal 24/09/2015 (Certificato ACCREDIA n. 0203 Sede H Vercelli – Elenco prove revisione 16 del 24/09/2015);
- U.RP.T085: "Campionamento di matrici ambientali ed alimentari da sottoporre a misure radiometriche" metodo interno.

ALLEGATO 3 – Glossario

Atomo	È il costituente fondamentale della materia ed è composto dal nucleo e dagli elettroni orbitali.
Attività	Numero di trasformazioni nucleari spontanee di un radionuclide che si producono nell'unità di tempo; si esprime in Becquerel.
Becquerel (Bq)	Unità di misura dell'attività; 1 Bq = 1 disintegrazione al secondo.
Combustibile nucleare	Materiale fissile utilizzato per produrre energia in una centrale nucleare.
Combustibile nucleare irraggiato	Combustibile nucleare dopo l'utilizzo in un reattore nucleare.
Contaminazione radioattiva	Contaminazione di una matrice, di una superficie, di un ambiente di vita o di lavoro o di un individuo, prodotta da sostanze radioattive.
Decadimento	Trasformazione spontanea di un nuclide instabile in un altro nuclide.
Decommissioning	Insieme delle operazioni pianificate, tecniche e amministrative da effettuare su di un impianto nucleare al termine del suo esercizio al fine della sicurezza e protezione della popolazione e dell'ambiente, in funzione della destinazione finale dell'impianto e del sito.
Dose assorbita	Energia assorbita per unità di massa di materiale irraggiato; si esprime in Gy.
Dose efficace	Somma delle dosi equivalenti nei diversi organi e tessuti del corpo umano moltiplicate per gli appropriati fattori di ponderazione (w_T) ; si esprime in Sv.
Dose efficace impegnata	Somma delle dosi equivalenti impegnate nei diversi organi e tessuti risultanti dall'introduzione di uno o più radionuclidi, ciascuna moltiplicata per il fattore di ponderazione del tessuto w_T ; si esprime in Sv .
Dose equivalente	Prodotto della dose assorbita media in un tessuto o organo per il fattore di ponderazione delle radiazioni; si esprime in Sv.
Dose equivalente impegnata	Dose equivalente ricevuta da un organo o da un tessuto, in un determinato periodo di tempo, in seguito all'introduzione di uno o più radionuclidi; si esprime in Sv.
Fondo naturale di radiazioni	Insieme delle radiazioni ionizzanti provenienti da sorgenti naturali, terrestri e cosmiche, sempre che l'esposizione che ne risulta non sia accresciuta in modo significativo da attività umane.
Formula di scarico	Insieme delle prescrizioni per l'immissione controllata di radionuclidi nell'ambiente; è diversificata per effluenti aeriformi e liquidi.

Gray (Gy)	Unità di misura della dose assorbita; 1 Gy = 1 J·kg ⁻¹ .
Gruppi di riferimento della popolazione (gruppi critici)	Gruppi che comprendono persone la cui esposizione è ragionevolmente omogenea e rappresentativa di quella degli individui della popolazione maggiormente esposti, in relazione ad una determinata fonte di esposizione.
Limite di Rivelabilità	Rappresenta il limite strumentale di rivelazione, cioè la minima quantità di radioattività che il sistema di misura è in grado di rivelare.
Notazione scientifica	$1E+01 = 1x10^{+1} = 10$; $1E+00 = 1x10^{0} = 1$; $1E-02 = 1x10^{-2} = 0.01$
Ricettività ambientale	Attività degli effluenti, sia liquidi sia aeriformi, il cui scarico provoca nel gruppo di riferimento della popolazione un prestabilito livello di dose, tale da rispettare il limite di dose pertinente.
Sievert (Sv)	Unità di misura della dose equivalente e della dose efficace; se il fattore di ponderazione della radiazione è uguale a uno, 1 Sv = 1 $J \cdot kg^{-1}$, Sono suoi sottomultipli il millisievert (1 mSv = 1E-03 Sv) e il microsievert (1 μ Sv = 1E-06 Sv).
Via critica	Via di esposizione relativa al gruppo di riferimento della popolazione.

ALLEGATO 4 - Bibliografia

- RT/2005/UDA ENEA Glossario di radioprotezione Radioprotezione della popolazione e dell'ambiente.
- UNSCEAR Report 2000 vol, I.
- UNSCEAR Report 2008 vol, I.
- World Health Organization, Guidelines for Drinking-water Quality, Fourth Edition, 2011.