

## Report on the overall process of management on EMF induced from HVAC power lines projects

## Sara Adda, Chiara Pedroli



## THE ELECTRICAL AC NETWORK IN ITALY





Distribution network







### ENVIRONMENTAL IMPACT OF HVAC POWER LINES – procedure for new projects of National Transmission Network

#### **Strategic Environmental Assessment**

Applied to the development plan of the electrical network

Competent authority: Ministry for the Environment Contribution of Piemonte Region (and Arpa Piemonte)

**Environmental Impact Assessment** 

Applied to single projects before authorization

Competent authority: Ministry for the Environment Contribution of Piemonte Region (and Arpa Piemonte)

#### Authorization procedure

Applied to single projects

Competent authority: Ministry for the Economic Development Contribution of Piemonte Region (and Arpa Piemonte) Strategic environmental assessment (VAS) is a process aimed at integrating environmental considerations into development plans and programs, to improve overall decision-making quality

The environmental impact assessment (VIA) is an administrative support procedure for the competent authority aimed at identifying, describing and assessing the environmental impacts of a project

Aim of the authorization process is to obtain:

- authorization for construction and operation of the HVAC lines;

- administrative measures required by law for the beginning of construction



## ENVIRONMENTAL IMPACT OF HVAC POWER LINES: EMF

### Italian regulations applied to the issue:

#### FRAMEWORK LAW N.36/2001

fundamental principles aimed at ensuring the protection of health, the protection of the environment and the landscape and to promote scientific research for the evaluation of long-term effects of EMF.

#### **IMPLEMENTING DECREE 07/08/2003**

Sets the EMF exposure limits, attention limit and quality goal

#### **REGIONAL LAW 19/2004**

Regional regulation on protection against exposure to electric, magnetic and electromagnetic fields





#### FRAMEWORK LAW N.36/2001

In relation to power lines, the state government has to:

- 1. Set the **exposure limits**, attention values, quality goals
- 2. Establish the **national registry** of EMF sources
- 3. Identify **measurement techniques** for emf exposure assessment
- 4. Define the layout of power lines with voltage > 150 kV
- 5. Define the methods to calculate **compliance volumes** (inside these volumes, no building's end use that provides for people long stay, such as residential, scholastic, healthcare, is allowed)





### **IMPLEMENTING DECREE 07/08/2003**

**Exposure limits** 

B =100µT E =5000 V/m

Not to be exceeded in any point and time interval

Attention values

B= 10µT (24 hours median)

Not to be exceeded in playgrounds, in residential areas, schools and places where people can stay more than 4 hours/day

Quality goal

B=3µT (24 hours median)

For the design of new power lines in the areas mentioned above (or new areas near electrical installations already present)



## COMPLIANCE VOLUMES: DECREE 05/29/2008

Compliance volume = the space surrounding a power line, which includes all the points characterized by a magnetic induction of intensity greater than or equal to the quality goal

First approximation distance (DPA): the distance, in plan on the ground level, from the projection of the line centre, that guarantees that every point whose projection to the ground is more than DPA is outside the compliance volume.







Compliance volumes and/or DPA are calculated using a current level corresponding to the current flow in normal service conditions of the power line (the maximum current level tolerated by the conductors for a prolonged period)



## calculation of the first approximation distances in some typical configurations

380kV single circuit I = 1500A DPA: 36+36 m

220kV single circuit I = 1100A DPA: 28+28 m







# calculation of the first approximation distances in some typical configurations

132kV single circuit I = 550A DPA: 16+16 m





# STRATEGIC ENVIRONMENTAL ASSESSMENT of development plan of national transmission network



TERNA plan provides:

Analysis of critical issues of the national network

Proposals of development plans to reduce this critical issues

Assessment of the environmental impact of these plans by the use of specific indexes

Definition of feasibility corridors based on the research of minumum environmental impact





Arpa performs the examination of the documents provided by Terna, and verifies the impact of the various projects of the plan, through the analysis of the variation of the indexes connected to human exposure to EMF.

## **STRATEGIC ENVIRONMENTAL ASSESSMENT: example**

#### 9.2.6 L'area della provincia di Novara: Intervento 155-N Stazione 132 kV Novara Est <u>SE 132 kV Novara Est e raccordi 132 kV</u>

Di seguito la scheda illustrativa dei risultati ottenuti dall'analisi degli effetti ambientali potenzialmente generati dall'azione relativa alla <u>nuova SE e raccordi</u> Novara Est, situata nell'area della provincia di Novara.

| Azione                    | 155-N_01 SE 132 kV Novara Est e raccordi 132 kV |  |
|---------------------------|-------------------------------------------------|--|
| Intervento di riferimento | 155-N Stazione 132 kV Novara Est                |  |
| Finalità dell'azione      | OTs4 - Qualità del servizio                     |  |
| Tipologia di azione       | Nuova infrastruttura                            |  |

| Area d                                      | li studio             |                                                                               |
|---------------------------------------------|-----------------------|-------------------------------------------------------------------------------|
| MALE NO | Regione interessata   | Piemonte                                                                      |
|                                             | Provincia interessata | Novara                                                                        |
|                                             | Comuni interessati    | Novara, Galliate                                                              |
| Legenda         Stackors                    | Dimensioni            | Area pari a circa 12,5 km², in<br>prossimità dell'esistente SE Novara<br>Est. |





| Coo  | Nome                                                                                                 | Contenuti                                                                                                                                     | Valore |
|------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Ist0 | Tutela delle reti ecologiche                                                                         | Misura la frazione dell'area di indagine non occupata da reti<br>ecologiche, di particolare interesse per l'avifauna                          | 0,43   |
| Ist0 | 5 Tutela aree agricole di pregio                                                                     | Misura la frazione dell'area di indagine non occupata da aree<br>agricole di pregio                                                           | 1,00   |
| Ist0 | Promozione dei corridoi<br>infrastrutturali preferenziali                                            | Misura la frazione dell'area di indagine occupata da aree<br>preferenziali                                                                    | 0,44   |
| Ist0 | 7 Tutela delle aree per i beni culturali e<br>i beni paesaggistici                                   | Misura la frazione dell'area di indagine non occupata da aree di<br>valore culturale e paesaggistico                                          | 0,00   |
| Ist0 | 3 Tutela delle aree di riqualificazione<br>paesaggistica                                             | Misura la frazione dell'area di indagine la cui destinazione d'uso<br>non è finalizzata alla riqualificazione paesaggistica                   | 0,84   |
| Ist0 | Tutela delle aree caratterizzate da<br>elementi culturali e paesaggistici<br>tutelati per legge      | Misura la frazione dell'area di indagine non occupata dalla<br>presenza di beni culturali e paesaggistici                                     | 0,99   |
| Ist1 | Tutela delle aree a rischio<br>paesaggistico                                                         | Misura la frazione dell'area di indagine non occupata da aree<br>considerate ad elevato rischio paesaggistico                                 | 0,00   |
| Ist1 | I Tutela delle aree di grande fruizione<br>per interesse naturalistico,<br>paesaggistico e culturale | Misura la frazione di area di studio non occupata da aree di<br>fruizione turistica e di notevole interesse pubblico                          | 0,00   |
| Ist1 | 2 Preferenza per le aree con buone<br>capacità di mascheramento                                      | Quantifica la possibilità di sfruttare la morfologia del territorio e la<br>copertura del suolo come mezzo per favorire l'assorbimento visivo | 0,00   |
| Ist1 | Preferenza per le aree naturali con<br>buone capacità di assorbimento<br>visivo                      | Misura la frazione dell'area di indagine in cui l'inserimento di<br>un'opera elettrica non comporta interferenze visive sul paesaggio         | 0,00   |
| Ist1 | Preferenza per le aree abitative con<br>buone capacità di assorbimento<br>visivo                     | Misura la frazione dell'area per cui la visibilità dell'intervento dai<br>centri abitati è minima                                             | 0,00   |
| Ist1 | 5 Tutela delle aree ad alta percettibilità visuale                                                   | Misura la frazione di area occupata da corsi d'acqua                                                                                          | 0,75   |
| Ist1 | 5 Riduzione dell'interferenza con aree<br>a pericolosità idrogeologica                               | Misura la frazione dell'area di indagine non occupata da aree a<br>pericolosità idrogeologica elevata e molto elevata                         | 1,00   |
| Ist1 | 7 Riduzione dell'interferenza con aree<br>a pericolosità antropica                                   | Misura la frazione dell'area di indagine non occupata da aree a<br>pericolosità antropica                                                     | 1,00   |
| Ist1 | 3 Ripartizione della pressione<br>territoriale                                                       | Misura la porzione delle aree comunali coinvolte nell'intervento<br>rispetto all'area complessiva di tali comuni                              | 0,91   |
| Ist1 | 9 Rispetto delle aree urbanizzate                                                                    | Misura la frazione dell'area in esame non occupata da tessuto<br>edificato                                                                    | 0,81   |
| Ist2 | D Limitazione dell'esposizione ai CEM                                                                | Misura la frazione dell'area di indagine idonea ai sensi del rispetto<br>dell'obiettivo di gualità di 3 µT (fissato dal DPCM 8 luglio 2003)   | 0,72   |





EMF impact index

## **ENVIRONMENTAL IMPACT ASSESSMENT and/or** AUTHORIZATION PROCEDURE



#### 6.2 CARATTERISTICHE ELETTRICHE DELL'ELETTRODOTTO

Le caratteristiche elettriche dell'elettrodotto sono le seguenti:

| Frequenza nominale | 50 Hz   |
|--------------------|---------|
| Tensione nominale  | 132 kV  |
| Corrente nominale  | 675 A   |
| Potenza nominale   | 155 MVA |

Tabella 2: Caratteristiche elettriche elettrodotto T.731

TERNA projects:

Layout and technical characteristics of the power line

Analysis of environmental impacts (both during worksite activities, and post-operam)

For EMF: information about electric and magnetic field emissions, first approximation distances (DPA), exposure levels in specific receptors (houses, schools, etc.)

Arpa performs the examination of the documents provided by Terna, verifies the EMF modeling results, gives recommendations on how to improve the project to minimize EMF exposure.





Municipalities: Pianezza, Collegno, Rivoli, San Gillio







a Nazionale





**The work** "Rationalization of the high voltage electricity grid in the city of Torino"

#### **Project 1**

Rearrangement of the 220 kV power lines T.217, T.231, T.233, T.254 coming into the Electrical Station of Pianezza in the municipalities of Pianezza and Collegno (TO)

#### **Project 2**

220 kV underground power line T.213 and 220 kV overhead power lines T.216 and T.231 in input to E.S. of Pianezza







### - Project 1 -Authorisation process









Lines to be demolished

New power lines

Power lines to be demolished New power lines Existing power lines, not involved in the project









### An example of pylons position and evaluation of the magnetic field emission

Power lines: T233-T254 + existing power lines 132kV



Vertical profile of the magnetic field. Red area:  $B > 3 \mu T$ 





#### Main conclusions concerning the activity of Arpa Piemonte

- The quality goal is met in any receptor where it can be applied
- Monitoring:
  - > Ante-operam monitoring: measurements of electromagnetic field levels before the project starts
  - > Post-operam monitoring: measurements of electromagnetic field levels before the project ends



Arpa Piemonte supports the proposer during the ante-operam and post-operam monitoring



#### Ante – operam monitoring: February 2019



| Petrol station  | Magnetic field B |
|-----------------|------------------|
| 1° floor (café) | 0.12 µT          |

| Building             | Magnetic field B |
|----------------------|------------------|
| 2° floor (Reception) | 0.22 μΤ          |
| 3° floor (Office)    | 0.21 µT          |







### - Project 2 -Authorisation process





## TERNA March 2016 PROJECT

#### **Overhead power lines**

Power lines close to residential areas

#### New power line

T231

Power lines to be demolished

T216

T216 – T217



Power lines to be demolished New power lines Line concerning the project 1

Existing power lines, not included in the project





T216-T217



#### A critical area: some results









|     |     | Ja   | anua | ry   |    |    |    |    | Fe | brua | агу       |    |     |      |     | ٨    | larch | n        |    |    |            |     |    | April |      |      |     |     |
|-----|-----|------|------|------|----|----|----|----|----|------|-----------|----|-----|------|-----|------|-------|----------|----|----|------------|-----|----|-------|------|------|-----|-----|
| 28  | 29  | 30   | 21   | 1    | 2  | 3  | 25 | 25 | 27 | 28   | 29        | 30 | 31  | 22   | 25  | 24   | - 25  | 25       | 27 | 28 | 29         | 30  | 3i | 1     | z    | э    | 4   |     |
| 4   | 5   | 8    | 7    |      | 9  | 10 | 1  | 2  | 9  | 4    | s         |    | 7   | 1    | 2   | з    | •     | 5        | 8  | 7  | 5          | 8   | 7  |       | 9    | 10   | 11  |     |
| 11  | 12  | 19   | 14   | 15   | 18 | 17 |    | 9  | 10 | 11   | 12        | 13 | 14  |      | 5   | 10   | 11    | 12       | 13 | 14 | 12         | 19  | 14 | 15    | 18   | 17   | 18  |     |
| 18  | 19  | 30   | 21   | 22   | 29 | 24 | 15 | 18 | 17 | 12   | 19        | 29 | 21  | 15   | 18  | 17   | 18    | 19       | 20 | 21 | 19         | 20  | 21 | 22    | 23   | 24   | 25  | -11 |
| 25  | 28  | 27   | 28   | 29   | 30 | 31 | 22 | 23 | 24 | 25   | 28        | 27 | 28  | 22   | 23  | 24   | 25    | 29       | 27 | 2  | 28         | 27  | 22 | 29    | 30   | 1    |     |     |
| 4   | 2   | 9    | 4    | -    | Ξ  | 7  | 1  |    |    | 4    | 5         | п  | 7   | 29   | 30  | an   | 4     | 8        | 3  | 4  | 9          | 14  | 5  | 1     | 7    |      | 9   | 8-1 |
| s   | s   | м    | т    | W    | т  | F  | s  | s  | м  | T    | w         | т  | F   | s    | s   | М    | T     | W        | т  | F  | s          | s   | М  | т     | w    | т    | F   |     |
|     |     |      | May  |      |    |    |    |    |    | June |           |    |     |      |     |      | July  |          |    |    |            |     | P  | Augus | 51   |      |     |     |
| 208 | ×1. | - 28 | - 25 | - 38 |    |    | 31 | 1  | z  | 9    |           | 5  |     | - 28 |     | - 20 | 1     | 2        | a  |    | 28         | 210 | 23 | 23    | - 39 | 31   |     |     |
| 3   | 4   | 5    | 8    | 7    |    | 9  | 7  | 2  | 9  | - 96 | 1987      | 12 | 19  | -6   | 8   | *    | *     | 9        | 10 | 11 | - Ø        | э   | 4  | 4     | 8    | 7    | 8   | 0-8 |
| 10  | -11 | 12   | 13   | -14  | 15 | 18 | 14 | 15 | 18 | 17   | 18        | 19 | 20  | 12   | 13  | 10   | iii.  | 16       | ÷  | 18 | 9          | 10  | 11 | -180  | -151 | 16   | 15  |     |
| 17  | 18  | 19   | 20   | 21   | 22 | 23 | 21 | æ  | 23 | 24   | -         | 28 | 27  | 19   | 20  | 30   | 30    |          | 34 | 28 | 18         | 17  | 18 | 15    | 20   | 21   | 22  |     |
| 24  | 25  | 28   | 27   | 28   | 29 | 30 | 22 | 25 | 30 | 1    | 18        | 3  | 4   |      | -11 |      | - 25  | - 10     | 81 | 4  | 23         | 24  | 25 |       | 27   | -    | 25  | 4-6 |
| 91  | 7   | 2    | 2    | A.   | -5 | Ĥ  | 5  | н  | 7  | *    | 9         | 10 | 11  | 2    | 3   | 4    | 5     | <b>H</b> | 7  | 1  | 30         | 31  | τ  |       | 3    | 4    | 5   | -   |
| s   | s   | М    | т    | W    | т  | F  | s  | s  | М  | т    | W         | т  | F   | s    | s   | М    | т     | W        | т  | F  | s          | s   | М  | т     | W    | т    | F   |     |
|     |     | Sep  | otem | ber  |    | -  |    |    | 0  | ctob | er        |    |     |      |     | No   | vem   | ber      |    |    |            |     | De | cem   | ber  |      |     | 2-4 |
| 30  | 31  | 1    | 2    | 3    | ٠  | 5  | 27 | 28 | 29 | 39   | 1         | 2  | 3   | 25   | 20  | -37  | -78,  | - 25     | 39 | 33 | 29         | 30  | 4  | 2     | 9    | 4    | 5   |     |
| 8   | 7   |      | 9    | 10   | 11 | 12 | 4  | 5  | 8  | 7    | 8         | 9  | 10  | 1    | 2   | 3    | 4     | 5        | 8  | 7  | - <b>B</b> | 7   |    | 9     | 10   | 11   | 12  |     |
| 19  | 16  | 15   | 18   | 17   | 18 | 19 | 11 | 12 | 13 | 16   | <b>15</b> | 18 | -17 |      | 9   | 10   | 11    | 12       | 13 | 14 | 19         | 16  | 15 | 16    | 17   | 18   | 19  | 2   |
| 20  | 21  | -    | 23   | 24   | 25 | 28 | 12 | 19 | 20 | 21   | 22        | 23 | 26  | 15   | -16 | 17   | -18   | 19       | 20 | 21 | 20         | 21  | 22 | 23    | 24   | 25   | 28  |     |
| 27  | 22  | 29   | 30   | 40   | 4  | з  | 25 | 28 | 27 | 28   | 29        | 30 | 31  | 22   | 29  | 24   | 25    | 26       | 27 | 28 | 27         | 28  | 29 | 30    | 31   | 24.5 | 826 |     |
| 4   | 5   | 8    | ¥.   |      | 9  | 10 | *  | 19 |    | 14   | 5         | u  | 7   | 29   | 30  | 1    | 2     | 5        | 4  | 5  | 9          | 14  | 10 | H     | 7    |      | 9   |     |
| s   | S   | М    | т    | W    | т  | F  | s  | s  | М  | т    | W         | т  | F   | S    | s   | M    | т     | w        | т  | E  | s          | s   | M  | т     | W    | т    | F   |     |







|    |          | Ja   | anua | ry  |      |     |    |    | Fe    | brua | ary   |               |      |       |    | N    | larch | 1          |      |       |    |     |    | April |      |     |      |       |
|----|----------|------|------|-----|------|-----|----|----|-------|------|-------|---------------|------|-------|----|------|-------|------------|------|-------|----|-----|----|-------|------|-----|------|-------|
| 27 | 28       | - 29 | 30   | St  | a.   | 2   | 31 | 1  | 2     | e    | 4     | s             | e    | 28    | э. | 2    | 3     | 4          | 5    | 8     | 28 | 29  | 30 | 31    | а    | 2   | э    |       |
| з  | 4        | 5    | в    | *   |      | 9   | *  |    | 9     | 10   | 11    | 12            | 13   | 7     |    | 9    | 10    | 11         | 12   | 19    |    | 5   | в  | 7     | *    | 5   | 10   |       |
| 10 | 11       | 12   | 19   | 14  | 15   | 18  | 14 | 15 | 16    | 17   | 12    | 19            | 20   | - 16. | 15 | 18   | 17    | 18         | 19   | 30    | 11 | 12  | 19 | 14    | 15   | 18  | 17   |       |
| 17 | 18       | 19   | 20   | 21  | 22   | 23  | 21 | 22 | 23    | 24   | 25    | 28            | 27   | 21    | 22 | 29   | 24    | 25         | 25   | 27    | 18 | 19  | 20 | 21    | 22   | 23  | 24   | >1    |
| 24 | 25       | 28   | 27   | 28  | 29   | 30  | 22 | ٣  |       | 1    | 4     | 5             | e    | 22    | 29 | -    | 31    | 7          | 1.16 | 100   | 25 | 28  | 27 | 28    | 29   | 30  | 7    |       |
| 31 | 1        | 10   | 3    | 4   | , in | £   | 7. | 8  | 9     | 10   | 11    | 12            | 10   | -4    | 16 | 8    | 7     |            | g    | 10    | 8  | (0) | 4  | 5     | Ħ    | 7   | 2    | 8-1   |
| s  | s        | М    | т    | W   | т    | F   | s  | s  | М     | т    | w     | т             | F    | s     | s  | М    | т     | W          | т    | F     | s  | s   | М  | т     | W    | т   | F    |       |
|    |          |      | May  |     |      |     |    |    |       | June |       |               |      |       |    |      | July  |            |      |       |    |     | A  | ugus  | st   |     |      |       |
| 25 | 28       | - 27 | - 28 | 29  | 30   | .1  | 30 | 25 | -1    | 2    | з     | 4             | (E)  | . 27  | 22 | - 29 | 30    | <b>a</b> : | 2    | а.    | 25 | 29  | W. | 28    | 29   | 30  | 31)  |       |
| 2  | 3        | 4    | ¥.,  | 8   | 7    |     |    | 7  | *     | 1    | - 100 | -44           | -12  | - 8   | 5  |      |       | 2          | g    | 10    | ×. | 2   | э  | -4-   | - 51 | •   | - F. | 6-8   |
| 9  | 10       | -11  | 12   | -19 | 14   | -16 | 19 | 14 | - 184 | ie.  | 17    | 18            | - 16 | -11   | 12 | - 13 | -14   | 15         | 18   | 10    | *  | 9   | 16 | 180   | -18  | -16 | -16  | -     |
| 18 | 17       | 12   | 19   | 20  | 21   | 22  | 20 | 21 | 38    | 23   | 24    | 25            | 28   | - 06  | 19 | 320  | 31    | -30        | -    | - 200 | 15 | 18  | 17 | 18    | 19   | 20  | 21   | Narra |
| 23 | 24       | 25   | 28   | 27  | 28   | 25  | 27 | 28 | 25    | 30   | 1     | 2             | 3    | -35   | 26 | ai.  | -     | -          |      |       | 22 | 23  | -  | 25    | 26   | 27  | 28   | 4-8   |
| 30 | 31       | 1    | 2    |     | 4    | 5   | 4  | 5  | 1.0   | 7    |       |               | 10   | 1     |    | 3    | 4     | - 10       | =    | 7     | 29 | 30  | 31 | 1     | 14   | э   | . 4  |       |
| s  | s        | М    | т    | W   | т    | F   | s  | s  | М     | т    | W     | т             | F    | s     | S  | М    | т     | W          | т    | F     | S  | s   | М  | т     | W    | т   | F    |       |
|    |          | Ser  | otem | ber |      |     |    |    | 0     | ctob | er    | _             | _    |       |    | No   | vem   | ber        |      | _     |    |     | De | cem   | ber  |     |      | 2-4   |
| 79 | 30       | ्वा  | 1    | 2   | э    | 4   | 29 | 27 | 58    | 25   | 30    | -             | 2    | 31    | 1  | *    | 3     | 4          | 5    | 8     | 28 | 29  | 30 | 4     | 2    | 3   |      |       |
| 5  | <b>.</b> | 7    | 8    | 9   | 10   | 11  | 9  | *  | 5     | 18   | 2     | 8             | 9    | 7     | ٠  | 9    | 10    | - 11       | 12   | 19    | 5  | 8   | 7  |       | 9    | 10  | 11   |       |
| 12 | 13       | -14  | 15   | 18  | 17   | 18  | 10 | 11 | 12    | 13   | 14    | ( <b>15</b> ) | 18   | - 14  | 15 | 18   | -17   | -18        | 19   | 20    | 12 | 13  | 14 | 15    | 18   | 17  | 18   | 2     |
| 19 | 39       | 21   | 22   | 23  | 24   | 25  | 17 | 12 | 19    | 20   | 21    | ×             | 2    | 21    | =  | 23   | 24    | 25         | 28   | 27    | 19 | 20  | 21 | 22    | 23   | 24  | 25   |       |
| 28 | 27       | 22   | 29   | 30  | 4    | 2   | 24 | 25 | 28    | 27   | 22    | 29            | 30   | 28    | 29 | 30   | ΞĒ.   | ×          | 3    | 4     | 28 | 27  | 28 | 29    | 30   | 31  | - 1  |       |
| 3  | 4        | 5    | =    | 1   | ж    | 9   | 31 | ġ. | 1     | 3    | 4     | 5             | E.   | 5     | 8  | *    |       | 9          | 10   | 11    | 2  | 3   | 3  | 5     | 8    | 7   | 3    |       |
| s  | S        | М    | т    | W   | т    | E   | S  | s  | М     | т    | W     | т             | F    | s     | S  | М    | т     | W          | т    | F     | s  | s   | M  | т     | W    | т   | F    |       |







|     |              | Ja   | anua | ry   |    |    |              |    | Fe  | brua | ary |     |      |     |     | ١    | Aarch | 1   |      |    |              |    |    | April |     |          |    |     |
|-----|--------------|------|------|------|----|----|--------------|----|-----|------|-----|-----|------|-----|-----|------|-------|-----|------|----|--------------|----|----|-------|-----|----------|----|-----|
| 29  | 27           | - 28 | - 29 | 36   | 31 | 1  | 50           | 34 | 4   | 2    | э   | 540 | s    | 27  | 25  | -25  | я.    | 2   | 8    |    | 29           | 27 | 28 | 25    | 36  | 21       | 4  |     |
| z   | 3            | 4    | 5    | 8    | 7  |    | 8            | +  |     | 9    | 10  | 11  | 12   | 5   |     | *    |       | 9   | 10   | 11 | z            | з  | ٠  | 5     | 8   | 7        |    |     |
| 5   | 10           | -11  | 12   | 19   | 14 | 15 | 19           | 14 | 15  | 18   | 17  | 12  | 19   | 12  | 13  | 14   | 15    | 18  | 17   | 18 | - <u>9</u> - | 10 | 11 | 12    | 13  | 14       | 15 |     |
| 18  | 17           | 12   | 19   | 20   | 21 | -  | 20           | 21 | -   | 23   | 24  | 25  | 28   | 19  | 20  | 21   | -     | 29  | 24   | 25 | 18           | 17 | 18 | 15    | 20  | 21       | 22 |     |
| 23  | 24           | 25   | 28   | 27   | 28 | 29 | 27           | 28 | w   | 1    | 14  | 3   | .4   | 28  | 27  | -    | 29    | 30  | 31   | т  | 23           | 24 | 25 | 28    | 27  | 28       | 29 |     |
| 30  | 31           | 4    | 8    | 3    | 4  | 5  | 5            | fi | 3   |      | 9   | 10  | 11   | 2   | 2   | 4    | 5     | a   | Z    | .8 | 30           |    | 15 | .9    | - 6 | 5        | e. | 8-  |
| s   | s            | М    | т    | W    | т  | F  | s            | s  | М   | т    | w   | т   | F    | s   | s   | М    | т     | W   | т    | F  | s            | s  | М  | т     | W   | т        | F  |     |
|     | _            |      | May  |      | 12 |    |              |    |     | June | È.  | -   |      |     |     |      | July  |     |      | _  |              |    | A  | ugus  | st  |          |    |     |
| 90. | <b>9</b>     | 12   | 9    | *    | 5  | 8  | 28           | 29 | 30  | 31   | 1   | 2   | 3    | 25  | 28  | - 27 | - 28  | 29  | 30   | 4  | 50           | 23 | 3  | 2     | з   |          | 5  |     |
| 7   | 5 <b>8</b> - | 9    | 10   | -11  | 12 | 13 |              | s  | 8   | 7    | 8   | 9   | -10  | 2   | ្លា |      | 5     | 8   | ż    | 2  | e            | 7  | 2  | 9     | 10  | 11       | 12 | 6-  |
| 14  | 15           | 18   | 17   | - 18 | 19 | 20 | 11           | 12 | 19  | 14   | 15  | 18  | 17   | 9   | 10  | - 11 | 12    | 19  | - 14 | 15 | 13           | 14 | 15 | 16    | -17 | 18       | 19 |     |
| 21  | 22           | 23   | 24   | 25   | 29 | 27 | 12           | 19 | 20  | 21   | 22  | 23  | 24   | 18  | 17  | 18   | -19   | 20  | 21   | 22 | 20           | 21 | 22 | 23    | -24 | 25       | 28 | tao |
| 28  | 29           | 30   | 31   | 4    | 10 | 3  | 25           | 28 | 27  | 28   | 25  | 30  | 1    | 23  | 24  | 25   | 28    | 27  | 28   | 29 | 27           | 28 | 25 | 30    | 31  | 1        | 2  | 4-  |
| 4   | <b>E</b> .   | H    | 7    |      | 3  | 10 | -            | 0  | 4   | 5    | 8   | 7   |      | 30  | 31  | ٦.   | 2     |     | 4    | 5  |              | 4  | 5  | -     | 1   | я        | 9  |     |
| s   | s            | М    | т    | W    | т  | F  | s            | s  | М   | т    | W   | т   | F    | s   | s   | М    | т     | W   | т    | F  | s            | s  | М  | т     | W   | т        | F  |     |
|     |              | Ser  | otem | ber  |    |    |              |    | 0   | ctob | er  |     |      |     |     | No   | vem   | ber |      | -  |              |    | De | cem   | ber |          |    | 2-  |
| 27  | - 72         | - 29 | 30   | :31  | 1  | 2  | 24           | 25 | 291 | 27   | 28  | 29  | -30  | 25  | -30 | at   | 1     | 2   | э    |    | 29           | 27 | 22 | 25    | 38  | <b>.</b> | 2  |     |
| 3   | - 4          | 5    | 8    | 7    | 8  | 9  | - <b>1</b> 1 | 2  | 3   | 4    | 5   | (8) | 7    | 5   | .8  | 7    | 181   | 9   | 10   | 11 | 3            | 4  | 5  | 8     | 7   | 8        | 9  |     |
| 10  | 11           | -12  | 13   | -16  | 15 | 18 | 2            | 9  | 10  | 11   | 12  | 13  | - 16 | 12  | 13  | 14   | 15    | 16  | 17   | 18 | 10           | 11 | 12 | 13    | 14  | 15       | 18 | 2   |
| 17  | 18           | 19   | 20   | 21   | 22 | 29 | 15           | 18 | 17  | 12   | 19  | 20  | 21   | -19 | 20  | 21   | 22    | 23  | 24   | 25 | 17           | 12 | 19 | 20    | 21  | 22       | 23 |     |
| 24  | 25           | 26   | 27   | 28   | 29 | 30 | 22           | 23 | 24  | 25   | 28  | 27  | 28   | 28  | 27  | 28   | 29    | 30  | Ξŧ.  | 1  | 24           | 25 | 28 | 27    | 28  | 29       | 30 |     |
| 4   | 8            | 3    | - 45 | 5    |    | 7  | 29           | 30 | 31  | 18   | 2   | 3   | (4)  | 3   | 4   | 5    | 8     | 1   | ×    | 9  | 31           | 3  | 15 | 3     | 4   | 5        |    |     |
| s   | S            | M    | т    | W    | т  | E  | s            | s  | M   | т    | W   | т   | F    | s   | S   | М    | т     | W   | т    | F  | s            | s  | M  | т     | W   | т        | F  |     |









New power line

T213

#### **Underground power line**



Electrical Station of Pianezza







#### T213 – example of underground cable placing







Without shielding



#### With shielding (loops with high magnetic coupling)





ner la Protezione A

#### **T213 - Magnetic induction field emitted from a junction**







**T213 – DPA** 



DP pov shi jun

DPA: power lines 6+6m shielded power lines: 3+3m junction: 8,5+8,5m



Junctions



**ARPA PIEMONTE** 

Technical opinion

#### **Overhead power lines**

The project solves many critical issues about the EMF exposure

#### Underground power lines

Requirements:

- Executive project: evaluate the exact location of the junctions in Rivoli, especially for the junctions N. G8 and G9, in order to locate them as far as possible from the buildings or any frequently used areas + consider the opportunity to increase their depth

- (Prudent avoidance principle) In via Pavia, in Rivoli: there are many buildings (café, shops, restaurants and a school)  $\rightarrow$  insert a shielded section  $\rightarrow$  it also protects people with medical devices who may be affected by any interference caused by the magnetic field

- Executive project: insert additional shielded sections, based on the actual position of the power line



## Results of this approach: examples of recently constructed cable power lines



Results of magnetic field measurements  $(\mu T)$  after the line implementation

11









Before

Magnetic field levels from 0.5 to 2  $\mu T$  below the conductors



After

Magnetic field levels from 0.4 (shielded cables) to 0.7  $\mu T$  (not shielded) above the cables



Results of magnetic field measurements  $(\mu T)$  after the line implementation

) FIN



