

Prot. 97727 del 21 novembre 2014

POLO MICROINQUINANTI DIPARTIMENTO PROVINCIALE DI TORINO

Via Sabaudia 164 . 10095 Grugliasco (TO)

RELAZIONE TECNICA BIOGEN CHIVASSO s.r.l.

Via Caluso 50 ËChivasso (TO)

Controllo microinquinanti in emissione

LUGLIO 2014

(annulla e sostituisce prot. N° 93462 del 10/11/2014)

Redazione	Funzione: Collaboratore Nome: Simona Possamai	Data: 20/11/2014	Firma	Cimon Boconic
	Funzione: Collaboratore Nome: Nicola Santamaria	Data: 20/11/2014	Firma	Soutomon Vicil
	Funzione: Collaboratore Nome: Carla Cappa	Data: 20/11/2014	Firma	Carle Cappa
Verifica	Funzione: Collaboratore Nome: Simona Possamai	Data: 20/11/2014	Firma	Cimon Posselle.
Approvazione	Funzione: Dirigente Responsabile Nome: Ivana Bottazzi	Data: 20/11/2014	Firma	Jran Bo H2

ARPA Piemonte

1. PREMESSA

Nellambito del programma di attività del Polo Microinquinanti, a seguito della richiesta di cui al prot. 32275LC5/AC del 21/02/2014 pervenuta dalla Provincia di Torino - Area Risorse Idriche e Qualità dell'Aria, Servizio Qualità dell'Aria e Risorse Energetiche - in data 31 luglio 2014, è stato ripetuto presso la ditta BIOGEN CHIVASSO s.r.l. il controllo dei microinquinanti in emissione dal punto di emissione in atmosfera n° 1 a servizio dellampianto di produzione di calore ed energia elettrica da combustione di vegetale.

Nel corso della giornata di campionamento sono stati prelevati:

- un campione di emissione registrazione ARPA n. 2014/40548 con scheda di campionamento emissioni in atmosfera n. EM 77/14/0606 del 31 luglio 2014,
- un campione di olio in alimentazione allampianto registrazione ARPA n. 2014/40549 con scheda di prelievo n. NC78/14/0606 del 31 luglio 2014

dei quali si riportano i risultati analitici nella presente relazione.

2. POSIZIONE AUTORIZZATIVA

Lazienda è in possesso di una autorizzazione rilasciata dal Servizio Qualità della Provincia e Risorse Energetiche della Provincia di Torino, Determinazione Dirigenziale n° 228-1394064/2007 del 27/11/2007, aggiornata con Determinazione Dirigenziale n° 3-390/2011 del 11/01/2011, per Mapsercizio di un impianto di cogenerazione alimentato a olio vegetale+.

Lœutorizzazione è stata rilasciata ai sensi dellœnt.12 del D. Lgs. 387/2003 per la promozione dellænergia elettrica prodotta da fonti energetiche rinnovabili, ma læggiornamento del 2011 include anche l'autorizzazione alle emissioni in atmosfera rilasciata ai sensi dell'art. 269 del D.Lgs. 152/2006. Læmpianto è costituito da un motore endotermico a ciclo diesel con le seguenti caratteristiche, come

%Rotenza immessa col combustibile: 36.114 kW

Potenza elettrica nominale: 16.950 kW Potenza termica utile: 10.500 kW

da autorizzazione:

Possibile impiego di parte del vapore prodotto per alimentare una turbina a olio siliconico da 1200 kW.

Caratteristiche dei sistemi di riduzione delle emissioni inquinanti:

Sistema SCR per labbattimento degli NOx

Catalizzatore ossidante per labbattimento del CO e lapssidazione del particolato carbonioso.+

Per il punto di emissione oggetto del controllo la utorizzazione ha fissato i limiti in emissione riportati nella tabella seguente.

Tabella 1: quadro emissivo autorizzazione provinciale del 2011

Punto	Provenienza	Inquinante	Limiti emissione medi orari	Abbattimento
1		Polveri totali	20 mg/Nm ³	SCR per NO _x
	MOTORE DI	СО	200 mg/Nm ³	Catalizzatore
Portata:	COGENERAZIONE	NO _x	200 mg/Nm ³	ossidante per
156000 Nmc/h Temp.: 200°C	OOOENENAZIONE	NH₃ giornaliero	10 mg/Nm ³	CO e polveri

Tutti i limiti di emissione si riferiscono a gas secco con contenuto di ossigeno residuo pari al 5% in volume a 0°C e 101,3 kPa.

Non sono stati fissati limiti per i microinquinanti organici.

3. PRELIEVI IN EMISSIONE

Le misure e i prelievi sono stati effettuati secondo le specifiche dei seguenti metodi:

UNI EN 1948-1:2006	Emissioni da sorgente fissa. Determinazione della concentrazione in massa di PCDD/PCDF e PCB diossina simili. Parte 1: Campionamento. Variante filtrocondensatore
UNI EN 1948-4:2010	Emissioni da sorgente fissa - Determinazione della concentrazione in massa di PCDD/PCDF e PCB diossina simili - Parte 4: Campionamento e analisi di PCB diossina simili
ISO 11338-2003	Emissioni da sorgente fissa. Determinazione degli idrocarburi policiclici aromatici in fase gassosa e particellare
UNI EN 13284-2003	Emissioni da sorgente fissa. Determinazione della concentrazione in massa di polveri in basse concentrazioni. Metodo gravimetrico.
UNI EN 14790-2006	Emissioni da sorgente fissa. Determinazione del vapore acqueo in condotti.
UNI 10169-2001	Misure alle emissioni - Determinazione della velocità e della portata di flussi gassosi convogliati per mezzo del tubo di Pitot.
UNI EN 15259:2007	Misurazione di emissioni da sorgente fissa. Requisiti delle sezioni e dei siti di misurazione e dellopbiettivo, del piano e del rapporto di misurazione.

Le misure relative ai prelievi vengono utilizzate per la normalizzazione del volume campionato (T=273K, P= 101.3 kPa, gas secco, ossigeno 5% v/v) necessario per il calcolo delle concentrazioni dei microinquinanti ricercati.

Si riportano di seguito i risultati delle misurazioni realizzate alle emissioni.

Tabella 2: Ditta BIOGEN CHIVASSO s.r.l. . MISURE Campione 2014/40548.

Ditta		Biogen Cl	nivasso s.r.l.		
Camino n.		1			
Verbale n.		EM 77/1	4/0606		
Data campioname	ento	31/07/14	4		
Campione n.		2014/40	548		
Campione bianco	di campo n.	2014/40	547		
	Caratter	istiche ch	imico-fisiche	dell'emissione misurate	
Portata fumi	Attuale	mc/h	175727,5		
	Normale	Nmc/h	90908,9		
	Anidra	Nmc/h	84272,6		
	rif. O2	Nmc/h	50036,9		
Umidità		% v/v	7,3		
O _{2 rif.}		% v/v	5		
O ₂ Arpa	_	% v/v	11,5	+/-	0,7

CO (rif. O2)	mg/Nmc	134,3		+/-
NOx (come NO2 - rif. O2)	mg/Nmc	135,1		+/-
CO2 (rif. O2)	% v/v	11,1		
Polveri totali (rif. O2)	mg/Nmc	n.d.	-	
Densità aeriforme	kg/Nmc	0,68	-	
Pressione ambiente	kPa	98,61	-	
Temperatura ambiente	°C	25,0	-	
Temperatura normalizzazione	K	273,15	-	
Pressione normalizzazione	kPa	101,34	-	
Campion	mento - l	INIT ENI 194	3-1 0 4· TSO	11338

Durata (min)	360
Ora inizio (hh.min.)	10.05
Ora fine (hh.min)	16.05
Prove di tenuta (< 5%)	1,0
Velocità fumi al punto di prelievo (m/s)	24,3
Temperatura fumi al punto prelievo (°C)	242,6
Pressione assoluta (kPa)	98,942
Flusso di aspirazione (1/min)	16,1
Flusso isocinetico teorico (I/min)	16,2
Rapporto isocinetico % (-5% < R < +15%)	-0,7
Volume al contatore volumetrico (mc)	5,783
Volume campionato (Nmc)	4,901
Volume campionato corretto O2 rif. (Nmc)	2,910

Note:

- L'incertezza associata alla misura di O2 % v/v rispetta il limite del 6% del misurando
- Il campionamento ha rispettato le condizioni isocinetiche previste dal metodo
- La tenuta pneumatica della linea di prelievo rispetta il 5% richiesto dal metodo
- I valori riferiti ai parametri CO, NO_x , CO_2 e polveri sono puramente indicativi e non sono soggetti a processi di validazione

4. MICROINQUINANTI ORGANICI IN EMISSIONE

4.1. Metodi analitici

Le determinazioni analitiche sui campioni di emissione sono state eseguite utilizzando rispettivamente il metodo UNI EN 1948-parti 2 e 3:2006 e parte 4:2014 (U.RP.M984) per PCDD/DF e PCB e il metodo ISO 11338-2:2003 (U.RP.M995) per IPA.

Per i campioni di olio è stata realizzata la ricerca di PCDD/DF e PCB

Lanalisi prevede tre fasi: estrazione, purificazione e analisi strumentale.

<u>ESTRAZIONE</u>: effettuata sul condensato, sul filtro e sull'adsorbente solido. Il condensato è estratto con diclorometano nel rapporto 1:10 (CH₂Cl₂:condensato) per 70 minuti in imbuto separatore; la medesima procedura è eseguita sulla fase acquosa rimanente per altre 2 volte. Il filtro e l'adsorbente solido (schiuma di poliuretano), a cui vengono addizionati gli standard di processo di PCDD/PCDF, PCB e IPA, sono estratti utilizzando il Soxhlet con toluene per 12 ore. Gli estratti ottenuti sono riuniti in un unico estratto che viene quindi ridotto di volume ed avviato alla purificazione.

<u>PURIFICAZIONE</u>: condotta eluendo læstratto ottenuto attraverso una colonnina di silica gel a granulometria controllata. Dopo questo passaggio si ottengono due soluzioni, una contenente gli IPA ed un'altra contenente PCDD, PCDF e PCB. La prima viene sottoposta direttamente ad analisi strumentale, previa aggiunta dello standard di siringa, mentre la seconda soluzione, dopo un'ulteriore purificazione su colonna multistrato, viene eluita al purificatore automatico Power Prep, al fine di separare i PCDD/PCDF dai PCB. Successivamente entrambe le frazioni sono analizzate strumentalmente, previa aggiunta dello standard di siringa.

<u>ANALISI STRUMENTALE:</u> si utilizza la tecnica gascromatografica abbinata alla spettrometria di massa e il confronto con soluzioni standard a concentrazione nota delle sostanze in esame. Nello specifico PCDD, PCDF e PCB sono stati analizzati con uno spettrometro di massa ad alta risoluzione, mentre gli IPA sono stati analizzati con uno spettrometro di massa quadrupolare.

I risultati analitici dei singoli composti e dei totali sono calcolati con il volume campionato normalizzato alle seguenti condizioni:

- temperatura 273 K
- pressione 101,3 kPa
- gas secco
- ossigeno di riferimento pari al 5%.

I congeneri non quantificabili contribuiscono alla concentrazione totale di PCDD/DF, PCB e IPA per un valore uguale alla metà dei rispettivi limiti di quantificazione (criterio del Medium Bound).

4.2. Policlorodibenzodiossine e policlorodibenzofurani (PCDD-PCDF)

Il totale di PCDD e PCDF è espresso in termini di Tossicità Equivalente. Per il calcolo sono stati utilizzati i fattori di tossicità equivalente (I-TEF: Fattori Internazionali di Tossicità Equivalente NATO/CCMS 1988) caratteristici dei 17 congeneri più tossici.

Nelle tabelle sottostanti si riportano anche i recuperi percentuali degli standard marcati di campionamento ed estrazione.

Tabella 3: PCDD-PCDF (singoli congeneri)

CAMPIONE		2014/40548		
Verbale		EM 77/14/0606		
Parametro	I-TEF	Risultato analitico (ng/Nm³)	Recupero % standard marcati	
2,3,7,8 TETRA-CDD	1	< 0,00128	51	
1,2,3,7,8 PENTA-CDD	0,5	< 0,00466	51	
1,2,3,4,7,8 ESA-CDD	0,1	< 0,00516	55	
1,2,3,6,7,8 ESA-CDD	0,1	0,00646	54	
1,2,3,7,8,9 ESA-CDD	0,1	< 0,00741	54	
1,2,3,4,6,7,8 EPTA-CDD	0,01	0,0273	58	
OCTA-CDD	0,001	0,0180	61	
2,3,7,8 TETRA-CDF	0,1	0,0322	57	
1,2,3,7,8 PENTA-CDF	0,05	0,0154	129	
2,3,4,7,8 PENTA-CDF	0,5	0,0274	47	
1,2,3,4,7,8 ESA-CDF	0,1	0,0101	76	
1,2,3,6,7,8 ESA-CDF	0,1	0,00821	84	
2,3,4,6,7,8 ESA-CDF	0,1	< 0,00445	53	
1,2,3,7,8,9 ESA-CDF	0,1	< 0,00259	72	
1,2,3,4,6,7,8 EPTA-CDF	0,01	0,0331	71	
1,2,3,4,7,8,9 EPTA-CDF	0,01	< 0,00429	46	
OCTA-CDF	0,001	0,0302	73	
PCDD/DF Totali O2 rif. (ng I	-TEQ/Nm³)	0,0	236	

Lautorizzazione non prevede un limite di emissione per PCDD/DF.

4.3. Policlorobifenili (PCB)

Sono stati determinati i 12 PCB % iossina - simili+(DL) e il loro totale espresso in WHO-TEQ (Fattori di Tossicità Equivalente WHO 2005), i 6 PCB marker (MK) con il loro totale, 11 PCB non diossina - simili (NDL), rilevanti dal punto di vista ambientale, con il loro totale, il totale dei 29 congeneri di PCB determinati, le singole famiglie a diverso grado di clorurazione e il totale espresso come sommatoria delle famiglie. Sono riportati anche i recuperi percentuali degli standard marcati di estrazione.

Tabella 4: PCB (singoli congeneri e famiglie)

	CAMPIONE		2014	/40548
	Verbale		EM 77/14/0606	
	Parametro	WHO-TEF 2005	Risultato analitico (ng/Nm³)	Recupero % standard marcati
	3,3',4,4' TETRA-CB	0,0001	0,0752	45
	3,4,4',5 TETRA-CB	0,0003	0,0175	51
	3,3',4,4',5 PENTA-CB	0,1	0,0295	57
	3,3',4,4',5,5' ESA-CB	0,03	0,0107	66
	2,3,3',4,4' PENTA-CB	0,00003	0,387	58
	2,3,4,4',5 PENTA-CB	0,00003	0,0297	59
	2,3',4,4',5 PENTA-CB	0,00003	0,858	53
	2,3,4,4'5 PENTA-CB	0,00003	0,0205	53
156	2,3,3',4,4',5 ESA-CB	0,00003	0,101	67
	2,3,3',4,4',5' ESA-CB	0,00003	0,0297	66
	2,3',4,4',5,5' ESA-CB	0,00003	0,0468	61
	2,3,3',4,4',5,5' EPTA-CB	0,00003	0,0150	58
Tota	le PCB DL O ₂ rif. (ngWHO-TEQ/Nm ³)		0,00333	
	2,4,4' TRI-CB		0,735	47
52	2,2',5,5' TETRA-CB		0,964	38
101	2,2',4,5,5' PENTA-CB		1,06	51
138	2,2',3,4,4',5' ESA-CB		0,712	59
	2,2',4,4',5,5' ESA-CB		0,924	60
180	2,2',3,4,4',5,5' EPTA-CB		0,265	58
	Totale PCB Marker O ₂ rif. (ng/Nm ³)		4,66	
	2,2',3,5',6 PENTA-CB		0,652	
99	2,2',4,4',5 PENTA-CB		0,420	
110	2,3,3',4',6 PENTA-CB		0,915	
128	2,2',3,3',4,4' ESA-CB		0,141	
	2,2',3,4',5,5' ESA-CB		0,105	
149	2,2',3,4',5',6 ESA-CB		0,505	
	2,2',3,5,5',6 ESA-CB		0,0746	
	2,2',3,3',4,4',5 EPTA-CB		0,145	
	2,2',3,3',4,5',6' EPTA-CB		0,0474	
	2,2',3,4,4',5',6 EPTA-CB		0,0662	
187	2,2',3,4',5,5',6 EPTA-CB		0,106	
	Totale PCB NDL O₂ rif. (ng/Nm³)	,	3,18	
Tota	le 29 PCB (DL+MK+NDL) O ₂ rif. (ng/	Nm³)	9,46	
	Triclorobifenili		2,66	
	Tetraclorobifenili		6,46	
	Pentaclorobifenili		4,92	
	Esaclorobifenili		3,19	
	Eptaclorobifenili		0,803	
	Octaclorobifenili		0,0566	
	PCB Totali O ₂ rif. (ng/Nm ³)		18,1	

Laputorizzazione non prevede un limite di emissione per i PCB.

4.4. Idrocarburi policiclici aromatici (IPA)

Gli IPA ricercati e quantificati nel campione sono riportati nella tabella sottostante. Si riportano anche i recuperi percentuali degli standard deuterati di estrazione.

Tabella 5: IPA (singoli composti)

CAMPIONE	2014/40548	
Verbale	EM 77/	14/0606
PARAMETRO	Risultato analitico (ng/Nm³)	Recupero % standard deuterati
Benzo(a)Antracene	2,9	84
Benzo(b)Fluorantene	5,59	
Benzo(k)Fluorantene	2,12	
Benzo(j)Fluorantene	2,14	
Benzo(a)Pirene	< 0,0190	79
Indeno[1,2,3-cd]Pirene	1,04	
Dibenzo(a,h)Antracene	2,00	91
Dibenzo(a,I)Pirene	< 0,0338	
Dibenzo(a,e)Pirene	< 0,0338	
Dibenzo(a,i)Pirene	< 0,0338	91
Dibenzo(a,h)Pirene	< 0,0338	
IPA totali O ₂ rif. (ng/Nm ³)	15	5,9
IPA totali O₂ rif. (mg/Nm³)	0,0000159	

Lautorizzazione non prevede un limite di emissione per gli IPA.

5. MICROINQUINANTI ORGANICI NELLEDLIO

5.1. Metodi analitici

Le determinazioni analitiche sul campione di olio sono state eseguite utilizzando rispettivamente il metodo EPA 1613B:1994 per PCDD/DF e EPA 1668C:2010 per i PCB, prove accreditate dalla ACCREDIA nel 2012, in conformità con quanto prescritto dalla norma UNI CEI EN ISO/IEC 17025. Anche in questo caso lanalisi prevede tre fasi: estrazione, purificazione e analisi strumentale.

5.2. Esiti analitici

Si riportano i risultati di PCDD/PCDF e PCB relativi al campione di studio di alimentazione del motore costituito da olio di palma grezzo, prelevato il 31/07/2014 con verbale n. NC 78/14/06.06

Tabella 6: PCDD-PCDF (singoli congeneri)

CAMPIONE		2014/	40549
Verbale		NC78/14/0606	
Parametro	I-TEF	Risultato analitico (ng/kg)	Recupero % standard marcati
2,3,7,8 TETRA-CDD	1	< 0,103	47
1,2,3,7,8 PENTA-CDD	0,5	< 0,753	38
1,2,3,4,7,8 ESA-CDD	0,1	< 1,17	46
1,2,3,6,7,8 ESA-CDD	0,1	< 0,818	59
1,2,3,7,8,9 ESA-CDD	0,1	< 0,915	59
1,2,3,4,6,7,8 EPTA-CDD	0,01	< 1,22	64
OCTA-CDD	0,001	64,8	25
2,3,7,8 TETRA-CDF	0,1	< 0,311	56
1,2,3,7,8 PENTA-CDF	0,05	< 0,752	50
2,3,4,7,8 PENTA-CDF	0,5	< 1,26	37
1,2,3,4,7,8 ESA-CDF	0,1	< 0,879	67
1,2,3,6,7,8 ESA-CDF	0,1	< 0,930	69
2,3,4,6,7,8 ESA-CDF	0,1	< 0,951	61
1,2,3,7,8,9 ESA-CDF	0,1	< 0,650	50
1,2,3,4,6,7,8 EPTA-CDF	0,01	< 0,944	87
1,2,3,4,7,8,9 EPTA-CDF	0,01	< 1,47	69
OCTA-CDF	0,001	< 2,31	25
PCDD/DF Totali ng I-TEQ/k			

Tabella 7: PCB (singoli congeneri e famiglie)

	CAMPIONE		2014/40549		
	Verbale		NC78/14/0606		
	Parametro	WHO-TEF 2005	Risultato analitico (µg/kg)	Recupero % standard marcati	
77	3,3',4,4' TETRA-CB	0,0001	0,00973	43	
81	3,4,4',5 TETRA-CB	0,0003	< 0,00380	47	
126	3,3',4,4',5 PENTA-CB	0,1	< 0,00381	53	
169	3,3',4,4',5,5' ESA-CB	0,03	< 0,00361	44	
105	2,3,3',4,4' PENTA-CB	0,00003	0,0536	55	
114	2,3,4,4',5 PENTA-CB	0,00003	< 0,00307	52	
118	2,3',4,4',5 PENTA-CB	0,00003	0,129	50	
123	2,3,4,4'5 PENTA-CB	0,00003	< 0,00310	49	
156	2,3,3',4,4',5 ESA-CB	0,00003	< 0,0118	57	
157	2,3,3',4,4',5' ESA-CB	0,00003	< 0,00335	56	
167	2,3',4,4',5,5' ESA-CB	0,00003	< 0,00542	52	
189	2,3,3',4,4',5,5' EPTA-CB	0,00003	< 0,00327	45	
Tota	le PCB DL μgWHO-TEQ/kg		0,00025		
28	2,4,4' TRI-CB		0,410	44	
52	2,2',5,5' TETRA-CB		0,248	44	
101	2,2',4,5,5' PENTA-CB		0,511	48	

	CAMPIONE		2014/40549	
	Verbale		NC78/14/0606	
	Parametro	WHO-TEF 2005	Risultato analitico (µg/kg)	Recupero % standard marcati
138	2,2',3,4,4',5' ESA-CB		0,209	53
	2,2',4,4',5,5' ESA-CB		0,477	51
180	2,2',3,4,4',5,5' EPTA-CB		0,0888	45
	Totale PCB Marker µg/kg		1,94	
	2,2',3,5',6 PENTA-CB		0,352	
	2,2',4,4',5 PENTA-CB		0,127	
110	2,3,3',4',6 PENTA-CB		0,334	
	2,2',3,3',4,4' ESA-CB		0,0247	
146	2,2',3,4',5,5' ESA-CB		0,0576	
	2,2',3,4',5',6 ESA-CB		0,438	
	2,2',3,5,5',6 ESA-CB		0,166	
	2,2',3,3',4,4',5 EPTA-CB		0,0308	
	2,2',3,3',4,5',6' EPTA-CB		0,0290	
	2,2',3,4,4',5',6 EPTA-CB		0,0407	
187	2,2',3,4',5,5',6 EPTA-CB		0,0893	
	Totale PCB NDL µg/kg		1,69	
Tota	le 29 PCB (DL+MK+NDL) µg/kg		3,84	
	Triclorobifenili		0,924	
	Tetraclorobifenili		1,76	
	Pentaclorobifenili		1,69	
	Esaclorobifenili		1,56	
	Eptaclorobifenili		0,587	
	Octaclorobifenili		< 0,0243	
	PCB Totali μg/kg		6,53	

Per il campione di olio di palma grezzo in alimentazione non esistono limiti specifici relativamente al contenuto di PCDD/DF e PCB; le concentrazioni rilevate nel campione prelevato risultano comunque essere estremamente basse, prossime al livello massimo previsto dal regolamento europeo per loplio di palma ad uso alimentare.

6. CONCLUSIONI

La utorizzazione non prevede limiti specifici per le concentrazioni in emissione di PCDD/DF, IPA e PCB.

Rispetto ai campionamenti eseguiti nel 2013, la concentrazione di PCDD/DF risulta essere circa dimezzata.

CAMINO 1		2013	2014
PCDD/DF	Concentrazione rif. O ₂ ng I-TEQ/Nm ³	0.0477	0,0236